• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于多分辨率分析和极值理论的集合VaR模型

Systematic VaR model based on multi-resolution analysis and extreme value theory

  • 摘要: 为了捕捉金融资产价格波动的多尺度时变特征,利用多分辨率分析(multi-resolution analysis,MRA)将收益率序列分解成不同时域上的正交分量,并对各分量序列分别建立适当的ARMA-GARCH模型,在此基础上引入极值理论(extreme value theory,EVT)对收益率的厚尾性进行建模,构建了一种MRA-EVT模型.将该模型应用于沪深300指数的VaR预测.实证研究结果表明,与传统ARMA-GARCH模型、无条件EVT模型和MRA模型相比,该MRA-EVT模型显著提高了VaR的预测绩效.

     

    Abstract: In order to capture time-varying features of volatility of asset price, multi-resolution analysis (MRA) was used to decompose financial returns into orthogonal components in different time domains. For each component, a certain ARMA-GARCH model was built. Extreme value theory (EVT) was then introduced so as to model the fat-tail of financial returns, and an MRA-EVT model was constructed. Finally, the proposed model was applied to predict VaR of CSI 300 index, and compared with traditional models, such as ARMA-GARCH model, unconditional EVT model and MRA model. Empirical results show that the MRA-EVT model significantly improves the accuracy of VaR estimation.

     

/

返回文章
返回