• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于SVM修正的模糊时间序列模型在沪指预测中的应用

Forecasting Shanghai stock index using FTS model based on SVM-modify

  • 摘要: 传统股票指数研究方法多停留在经验判断或简单的数据分析阶段,主要方法有基本面分析法、交易指标分析法等,这类分析方法或是对以往数据包含的信息使用效率比较低,或是对使用者的经验积累要求很高.近年来,数据挖掘方法在股市中已有很多成功的应用.在上述工作的基础上,从以下三方面提出一种改进的糊时间序列(fuzzy time series , FTS)模型并将其应用于股市预测中:一是提出了新的区间划分方法;二是提出新的模糊集权重公式;三是运用SVM分类算法进行模型修正,提出组合FTS模型.样本是选取1996~2003年上证指数数据,利用提出模型进行指数预测.实验结果表明,与多种重要FTS模型进行比较,本文提出的改进模型效果更优.

     

    Abstract: Traditional methods for stock index research are still at the stage of judging by experience or relying on simple data analysis, among which fundamental analysis and trading indicator analysis frequently used. These methods have noticeable disadvantages: Inefficient utilization of existing information or requirement for highly experienced users. A modified fuzzy time series (FTS) model was proposed based on the following three aspects. Firstly, a new method of interval division was developed. Secondly, a new weight formula for fuzzy set was devised. Thirdly, a modified FTS model was built with the application of SVM classification model. Predictions for stock index were made by using the proposed model. Experiment results from Shanghai index data ranging from 1996 to 2003 indicate that compared with other important FTS models; the proposed model provides better performance.

     

/

返回文章
返回