• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于深度学习算法的高频交易策略及其盈利能力

High-frequency trading strategies based on deep learning algorithms and their profitability

  • 摘要: 深度学习算法作为机器学习中的一种重要算法,在图像处理、语音识别、机器翻译等领域已成功应用.将深度学习算法应用于高频交易中,选取卷积神经网络和LSTM神经网络分别构建涨跌分类模型,在此基础上提出高频交易策略,并以沥青期货主力合约为例进行回测检验,实证分析策略优良性.通过与人工神经网络高频交易策略的比较,回测检验结果表明基于卷积神经网络和LSTM神经网络的高频交易策略的盈利能力较强,泛化能力较好,两种策略的胜率和期望收益虽有所差异,但均比人工神经网络高频交易策略高.

     

    Abstract: As an important algorithm, deep learning has been applied successfully to image processing, speech recognition, machine translation and other fields. Here, deep learning algorithms were applied to high-frequency trading. Convolutional neural network(CNN) and long short-term memory(LSTM) neural network were selected to build up and down classification models, respectively. Based on the models, high-frequency trading strategies were proposed. Then the data of bitumen futures contract was used for back-testing and empirically analyzing the superiority of the strategies. In back-testing, deep learning algorithms were compared with artificial neural network(ANN). The results show that both strategies based on CNN and LSTM neural network exhibit better profitability and generalization ability. In addition, the winning rates and expected returns of the two strategies are also better.

     

/

返回文章
返回