• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

有向网络的混合模型新退火算法研究

Research on a new annealing algorithm for mixed model of directed networks

  • 摘要: 混合模型的传统期望最大化(EM)算法可以有效地探索网络的结构规律性.但它总是陷入局部最大值.为此提出了确定性退火期望最大化(NMEM)算法来解决这个问题,该算法不仅能够防止局部最优,而且提高了收敛速度,因此NMEM算法适用于估计混合模型的参数.该算法通过经验设置其初始参数β0,设计了有向网络的混合模型新退火算法,并设计了β0的参数选择方法.

     

    Abstract: Although the traditional expectation-maximization (EM) algorithm of the mixed model can effectively explore the structural regularity of the network, it always gets stuck in some local maximum. A deterministic annealing expectation maximization (NMEM) algorithm is proposed to solve this problem, which not only prevents local optimum but also improves convergence speed and is thus used to estimate the parameters of the hybrid model. The algorithm always sets its initial parameters β0 through experience. If β0 is too small, the results are meaningless, or if β0 is too large, it will converge to the local maximum more frequently. Furthermore, a new hybrid model of directional network and a parameter selection method of β0 were designed.

     

/

返回文章
返回