• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

高维Extremile回归中变量选择的类弹性网惩罚方法

Variable selection in high-dimensional extremile regression via the quasi elastic net

  • 摘要: 近几年提出的Extremile回归不仅保留了分位数回归通过设定不同的分位点全面掌握数据信息的优点,与分位数回归中和Expectile回归相比也有其独特的优势,特别是在风险保护上的优秀表现。本文提出了一种带惩罚的线性Extremile回归模型用以解决高维数据下的变量选择问题,其中惩罚函数是由 L_0 L_2 惩罚函数组合得到的类弹性网(QEN)惩罚函数,同时给出了解决相关优化问题的EM算法,以及在较为宽松条件下即能成立相关理论性质。在数值模拟中,我们通过与 L_0 L_1 L_2 和弹性网惩罚函数的比较,展示了类弹性网惩罚函数。

     

    Abstract: Extremile regression proposed in recent years not only retains the advantage of quantile regression that can fully show the information of sample data by setting different quantiles, but also has its own superiority compared with quantile regression and expectile regression, due to its explicit expression and conservativeness in estimating. Here, we propose a linear extremile regression model and introduce a variable selection method using a penalty called a quasi elastic net (QEN) to solve high-dimensional problems. Moreover, we propose an EM algorithm and establish corresponding theoretical properties under some mild conditions. In numerical studies, we compare the QEN penalty with the L_0 , L_1 , L_2 and elastic net penalties, and the results show that the proposed method is effective and has certain advantages in analysis.

     

/

返回文章
返回