• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于熵补偿的Black-Litterman模型的投资组合

Portfolio based on Black-Litterman model with entropy compensation

  • 摘要: Black-Litterman模型在传统的投资组合模型中加入了投资者的主观判断,在金融市场上获得了一定的认可.在该模型基础上,提出了一种基于熵补偿的最优化方法.首先根据历史数据,利用AR-TGARCH模型预测收益率和波动率,作为模型的输入变量,代替了纯粹意义上分析师的主观决定;其次加入信息熵,改进了传统最优化效用函数,通过求解非线性规划问题得到资产的最优组合权重.实证研究表明,该模型较之其他投资组合模型,能够获得更高的收益,具有更强的应用性.

     

    Abstract: The Black-Litterman model can be recognized in the financial markets in combination with subjective judgment of the investors and the traditional portfolio. Based on the model, the optimization method with entropy compensation was presented. AR-TGARCH was used on the basis of historical data to predict yields and volatility, as the input variable, instead of the pure sense of the analysts subjective decision. The optimal combination of asset weights were obtained by solving the nonlinear programming problem with entropy compensation. Empirical study shows that the new model achieves better return and has stronger applicability than other portfolio models.

     

/

返回文章
返回