• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

一种处理非均衡数据的非迭代核逻辑回归方法

A non-iterative approach to kernel logistic regression for imbalanced data

  • 摘要: 针对严重非均衡数据提出一种非迭代核逻辑回归的学习方法.该方法是对经典处理核逻辑回归的迭代加权最小二乘方法的一种改进,不仅减轻了由于迭代所造成的运算负担,而且在模型训练中利用了基准的类别占比信息,避免了使用诸如欠抽样、过抽样、代价敏感学习等通常处理非均衡数据的方式所导致的问题,使得在数据规模大的非均衡数据情形下,可以方便快捷地对核逻辑回归进行建模,构造具有稳健性的修正最小二乘逻辑回归分类器.理论研究表明,所提方法具有一定的优良性质,模拟研究及实证分析显示其分类效果良好.

     

    Abstract: A non-iterative kernel logistic regression learning method for severely imbalanced data was proposed. The method is an improvement on the iterative weighted least squares method for classical kernel logistic regression. It not only reduces the computational burden caused by iteration, but also utilizes the knowledge of the ratio of the benchmark category, and can avoid problems normally encountered when processing imbalanced data such as undersampling, oversampling and cost-sensitive learning. Thus, this method enables the efficient and fast modelling of kernel based logistic regression in the case of large-scale imbalanced data, through the construction of a robust modified least square logistic classifier. Theoretical research indicates that the proposed method has some excellent properties, and simulation research and empirical studies show that its classification effect is good.

     

/

返回文章
返回