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Public summary

m We propose an alternative modified Cholesky decomposition (AMCD) of the precision matrix of longitudinal data,
which results in robust estimation of the correlation matrix against model misspecification of the innovation variances.

m A joint mean-covariance model with multivariate normal distribution and AMCD is established, the quasi-Fisher scor-
ing algorithm is developed, and the maximum likelihood estimators are proved to be consistent and asymptotically nor-

mally distributed.

m A double-robust joint modeling approach with multivariate Laplace distribution and AMCD is established, and the quasi-
Newton algorithm for maximum likelihood estimation is developed.
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Abstract: The correlation matrix might be of scientific interest for longitudinal data. However, few studies have focused
on both robust estimation of the correlation matrix against model misspecification and robustness to outliers in the data,
when the precision matrix possesses a typical structure. In this paper, we propose an alternative modified Cholesky decom-
position (AMCD) for the precision matrix of longitudinal data, which results in robust estimation of the correlation matrix
against model misspecification of the innovation variances. A joint mean-covariance model with multivariate normal dis-
tribution and AMCD is established, the quasi-Fisher scoring algorithm is developed, and the maximum likelihood estimat-
ors are proven to be consistent and asymptotically normally distributed. Furthermore, a double-robust joint modeling ap-
proach with multivariate Laplace distribution and AMCD is established, and the quasi-Newton algorithm for maximum
likelihood estimation is developed. The simulation studies and real data analysis demonstrate the effectiveness of the pro-
posed AMCD method.
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1 Introduction

Longitudinal data arises frequently in the economics, social
sciences, epidemiology and biological research. The observa-
tions of each subject are measured repeatedly over time and
thus are intrinsically correlated™. It is crucial to correctly ad-
dress the within-subject covariation structure since ignoring
this structure may lead to inefficient estimators of the mean
parameter. Moreover, the covariation structure itself may be
of scientific interest”, while covariance and precision
matrices suffer from positive definiteness constraints and high-
dimensional parameters, and the correlation matrix should
satisfy the constraint that its diagonals must be 1’s in addi-
tion to the aforementioned two issues. Thus, there is a fre-
quently-used strategy to estimate the correlation matrix, i.e.,
first estimating the covariance or precision matrix and then
calculating the corresponding correlation matrix, which mo-
tivates us to develop the decomposition method proposed in
this paper.

Now it is vital to decide to decompose and model whether
the covariance matrix or the precision matrix. In fact, the cov-
ariance or precision matrix may possess typical structures,
and the matrix inversion operation does not protect the origin-
al structure, such as sparsity, regression relationship, etc.,
then decomposing and modeling the inverse of the covari-
ance matrix or the inverse of the precision matrix may result
in efficiency loss. For the precision matrix, Pourahmadi® in-
troduced the modified Cholesky decomposition (MCD),

0306-1

which leads to an unconstrained parameterization for the pre-
cision matrix that automatically guarantees its positive defin-
iteness. The entries in MCD can be interpreted as generalized
autoregressive parameters and innovation variances, which
can be estimated by fitting a class of unconstrained joint mean-
covariance models via maximum likelihood estimation. For
the covariance matrix, Zhang and Leng! analyzed within-
subject covariation by decomposing the covariance matrix it-
self rather than its inverse by using the moving average
Cholesky decomposition (MACD). The entries in this decom-
position are moving average parameters and innovation vari-
ances. Based on MACD, the corresponding correlation ex-
pression depends on the innovation variances, and thus is not
necessarily robust with respect to their model misspecifica-
tion. In contrast, Chen and Dunson” proposed an alternative
Cholesky decomposition (ACD), which directly models the
covariance matrix but in a way that the estimates of the cor-
relation matrix do not depend on the quality of modeling and
estimating the innovation variances; that is, estimation of the
correlation matrix is robust with respect to model misspecific-
ation of the innovation variances, the components shared by
both MACD and ACD. ACD is closely related to the moving
average model of “standardized” measurements on a longit-
udinal subject®”. By directly considering the correlation mat-
rix, Zhang et al." developed the hyperspherical parameteriza-
tion of the Cholesky factor (HPC), which is very appealing
since the resulting parameters are unconstrained on the sup-
port and directly interpretable in regard to the correlations.
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HPC can always lead to a more parsimonious model,
however, at the cost of intensive computations. To the best of
our knowledge, when the precision matrix has a typical struc-
ture, robust estimation of the correlation matrix against mod-
el misspecification of innovation variances has been much
less investigated.

Moreover, longitudinal data may suffer from outliers, and
several heavy distributed joint modeling approaches have
been investigated. Lin and Wang" proposed a joint mean and
scale covariance model based on multivariate ¢ distribution
and MCD. Maadooliat et al.” further investigated the joint
model based on the ¢ distribution and ACD. However, this
kind of joint #-regression approach is computationally intens-
ive since joint regression parameters together with the degree
of freedom need to be estimated. As an alternative, Guney et
al.ladopted a joint model with multivariate Laplace distribu-
tion and MCD. The Laplace distribution is heavy-tailed and
robust to outliers. It does not have the degree of freedom
parameter; thus, its computation is more convenient than that
of the ¢ distribution. However, this joint modeling approach
could not lead to the aforementioned robust estimation of the
correlation matrix.

In this paper, motivated by ACD, we propose an alternat-
ive modified Cholesky decomposition (AMCD) of the preci-
sion matrix for longitudinal data. Specifically, the inverse of
the diagonal matrix of innovation standard deviations is
placed outside the two triangular matrices, which alone de-
termines the correlations, and thus results in the aforemen-
tioned robust estimation of the correlation matrix. Then, we
establish a joint mean-covariance model with multivariate
normal distribution and AMCD, and the quasi-Fisher scoring
algorithm, and show that the maximum likelihood estimators
are consistent and asymptotically normally distributed. Fur-
thermore, we present the double-robust joint modeling ap-
proach with multivariate Laplace distribution and AMCD,
and the quasi-Newton algorithm for maximum likelihood es-
timation. We carry out the simulation studies, cattle data ana-
lysis, and sleep dose-response data analysis, which indicated
that the proposed AMCD method performed well.

The outline of this paper is organized as follows. In Sec-
tion 2, we review MACD, ACD and MCD, propose AMCD,
and discuss their close relationships. In Section 3, we estab-
lish the joint normal mean covariance model with AMCD and
give the iterative algorithm and asymptotic properties. In Sec-
tion 4, we investigate the joint model with multivariate
Laplace distribution and AMCD, and develop the quasi-New-
ton algorithm for maximum likelihood estimation. In Section
5, we carry out the simulations. In Section 6, real data analys-
is is conducted. In Section 7, the paper is summarized. All the
calculations and proofs are in the Appendix.

2 Existing and proposed Cholesky-type
decompositions of the covariation
structure

Assume that y; is the measurement at the jth time point ;
for the ith subject (i=1,...,n,j=1,...,m;). Let
Vi =OiseeesVim)', and £, =(t,,....1,,) . Moreover, suppose
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that y, follows a normal distribution with E(y) = =
(is--sii)" and var(y) =X, Then let y, = +r, where
ri=(Fitse ey Fimg )T is the normal random error, with E(r;) =0
and var(r;) = %,.

In some cases, the covariance matrix Z; (or its inverse, i.e.,
the precision matrix) is of scientific interest and possesses a
typical structure. Then, a specific Cholesky-type decomposi-
tion can be established to adapt to the corresponding typical
structure. Furthermore, the correlation matrix might be of par-
ticular interest; therefore, it is worthwhile to develop a robust
estimation procedure based on the specific decomposition
process, of course, with some suitable modifications. Along
this line, several existing Cholesky-type decompositions are
disscussed, the proposed AMCD is introduced, and their close
connections are investigated.

2.1 MACD of the covariance matrix

If the covariance matrix itself possesses a typical structure, it
is reasonable to decompose the symmetric and positive defin-
ite covariance matrix as X, = C,C! based on the standard
Cholesky decomposition. Here C; is a unique lower triangu-
lar matrix with positive diagonal elements. Define
diag (C)) = (Ciits--+Cinm)'» and A, = diag(c,,...,Conm). For
simplification, let dij=cy,j=1,...,m; then,
A; =diag(dy,...,d,,). In Ref. [4], the standard Cholesky de-
composition was transformed into MACD; that is, the matrix
A, is located inside two triangular matrices:

3 =CA'AA'C = LAIL], )

where L, = C,A;' results in a standardized C;, namely divid-
ing each column of C; by its diagonal elements. Let
Li=(y),,, ad D;=A= diag(dfl,...,djm). Denote
& =(EinsenrEim, )T =L 'r,; then, var(g)=A’ and r,=Ls.
Note that L, is a lower triangular matrix with diagonals being

1's; then, a moving average representation for the residual r;
can be expressed as follows:

-
r;= Zl,-,-,e,-ﬁs,-,-,j =1,...,m, 2)
=1

0
where Zl[j,g,, is denoted as 0. Then, from (2), for any
=1

1 < j,k <m;, with jAk=min{j,k}, it follows that
Nk

2
COV(rij’rik) = Z lijrlikzd,',’
=1

and thus, the correlation between r;; and r; is given by

Jnk

Z li.ﬂlikrdizr

= — (€)

j k
2 72 2 72
: l[ﬂdu : l[/sldll
=1 =1

which is determined by the L; and A; matrices. Then it might
not be robust against misspecification of the model for the in-
novation variances d, j = 1,...,m;.

corr (ry, ry) =
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2.2 ACD of the covariance matrix

In contrast, the standard Cholesky decomposition can be
transformed into ACDU; that is, the matrix A, is located out-
side the two triangular matrices:

% = AL CCTAT A = AAATA,,

where A; = A;'C; leads to a standardized C;, namely dividing
each row of C;, by its diagonal elements. Denote
A = (aijk)mtxm,,. It is obvious that A;'r, has covariance matrix
AAT, within which A, disappears. Specifically, let
&= rEm) =(AA)'r;  then, var(e)=1I, and
A;'r;=Ag,. In fact, A, is also a lower triangular matrix with
diagonals being 1's; then, the “standardized” residual r;/d;
can be represented as
L j—1
% = Z::]ai,,e,, +e,j=1,....,m. 4

From (4), it follows that

Jnk

cov (rijs rik) = dijdik Z A1 Qi

t=1

and thus

Jnk

E ai /raikr

corr(ry, ry) =

which is determined by the A; matrix alone. Modeling a cor-
relation matrix via ACD is highly appealing since it is robust
with respect to misspecification of the model for o,
j=1....m.

2.3 MCD of the precision matrix

However, the precision matrix might possess a typical struc-
ture and should be decomposed appropriately. Based on the
standard Cholesky decomposition, X' =C;'C;' = BB,
where B; = C;' is a unique lower triangular matrix with posit-
ive diagonals. Similar to (1),

' = B'AAAB, = FTAF, Q)

where FT = B] A, leads to a standardized B}, namely dividing
each column of B by its diagonal elements d;’. In fact, (5)
can be transformed into F.X.F| = A?, i.e., MCD*". Notice that
F; can be expressed as a lower triangular matrix, with the di-
agonal entries being 1’s and the (j,k)th nonzero entries being
—fir-k < j. Then let & = Fir;, and var(g) = A7, from which
the autoregressive representation for the residuals r;; can be
expressed as follows:

j-1
r; = E farate,j=1,....m,.
=1

Then, by simple calculation, the correlation between r;; and
1y is determined by the F; and A; matrices, and thus is not ro-
bust against misspecification of the model for innovation
variances.
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2.4 AMCD of the precision matrix

Conversely, the proposed AMCD causes the matrix A;' to be
outside the two triangular matrices:

I = A'ABIBAA = AT TA, (6)

where 77 = A,;B] results in a standardized B}, namely divid-
ing each row of B by its diagonals d;’. In fact, (6) is equival-
ent to T,A;'EA'T] =1,,. Apparently, the covariance matrix
of A'r, is T/'T; T, where A; disappears. Let & = T;A;'r;; then,
var(g;) = I,,. Note that

1 0 e 0
_¢i21 1 - 0
T, =
_¢mnl _¢im,2 cee 1
Then, the “standardized” residual r,;/d;; can be modeled by
r”- _ j-1 r’_j .
d_,-,-_ [:]¢i/"‘d_ij+6i_/s]—1,...,m,-, (7)

where the generalized autoregressive parameter ¢,;,’s are un-
constrained, the “standardized” factor d;;’s are restricted to be
positive, the innovation variances var(e;) = 1, and the innov-
ation covariances cov (g, €;) =0, j # k, implying their uncor-
relation in general, more specifically, their independence
when assuming normality. Note that d;.’s are the innovation
variances in MCD. For ease of comparison, they are also re-
ferred to as innovation variances rather than squared “stand-
ardized” factors, in AMCD.

Obviously, corr(r;,r;) is determined by the 7, matrix
alone, and thus is robust against misspecification of the mod-
el for &, j=1,...,m;. This advantage makes the proposed
AMCD attractive for modeling the correlation matrix.
Moreover, it is more suitable to adopt AMCD than ACD
when the precision matrix, rather than the covariance matrix,
possesses a typical structure.

3 Normal joint modeling approach

3.1 Joint mean-covariance model

Based on the proposed AMCD in (6), the estimation of X' is
equivalent to that of T and A;. Define

log(4?) = diag{log(a).....log(d2, )}. Following the general
approach in Ref. [11], the unconstrained nonredundant entries
of log(A?) and T, can be modeled together with y; by gener-

alized linear regression models
gu)=xB, log(d) =z, ¢, =why,

where g(-) is assumed to be a monotone and differentiable
known link function; x;;, z;; and w,; are the vectors of covari-
ates; and 3,4 and y are the px 1, sx1 and gx 1 vectors, re-
spectively, of the corresponding associated parameters. The
covariates x;;, z; and w;; may consist of the baseline covari-
ates, polynomials in time (for x;; and z;;) or time lag (for w;;),
and even their interactions. For instance, when the entries of
i, log(A?) and L, are modeled by polynomials in time and
time lag, the covariates may be constructed as
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Wi = (1,(t,/-—l[,‘), ( ij 1k)q_ )
assuming that the correlation between 7; and r; relies only on
the time lag between f,; and 7, (1 <k < j<m,).
3.2 Maximum likelihood estimation

According to the proposed AMCD, inversing (6), it can be
obtained that

5, =AT'TA,. (8)

Let 0= (8",4",y")"; then, from (6) and (8), twice the negative
log-likelihood function of the multivariate normal distribu-
tion, except for a constant, can be written as

—21(h) = Z log[=,] + Zr,?z;'r, =
i=1 i=1

2 log |A T T"A|+ Z AT TIT A

i=1 i=1

where r;=y,—u;. In this case, the joint mean-covariance
model can be referred to as the normal joint modeling model
(NJMM). By taking partial derivatives of /(f) with respect to
B, A and vy, respectively, the maximum likelihood estimating
equations for these parameters become

Uiy D)= Z W s =p) =0,

Us (1:8.7) = 5227 (h=1,)=0,

Us(yﬁ/l)—Z(e 01) " TTe—o ©
!
Here % is the pxm; matrix with jth column
o,
6/3/ =8 ( T,,B) X;;, &' (+) is the derivative of the inverse func-
tion g'(-), and we denote u(-)=g"'(); Z = (,l, ,z,ml)T
h, =diag(T'T,A;'rrTA;Y), and 1, is a m;x 1 vector of 1’s;
aTiil _ T,l IT,l .
3y, =—1; 3y, with
0 0 e 0
or, | —wau 0 e 0
dy, : '
Wity " Wimaj 0
for j=1,....,q,and w = (w,»,-kvl,...,w,-jkvq)T.

Since the solutions satisfy the equations (9), the paramet-
ers 8, A and y can be solved iteratively with the others kept
fixed. More specifically, the numerical solutions for these
parameters can be calculated by the quasi-Fisher scoring al-
gorithm.

First, the expectations of the Hessian matrices are listed be-
low and discussed explicitly in Appendix A. That is,

03064

g\ ((1© 1O 1,0
I(G)Z_E(W): I (0) 122(0) 123(0) s
Li(0) 1,(0) L;(9)
where

O] ., O
111(0): _12;1_’
Z 9B " B

i

1
1, (0) = ZZT {1, +(T]T) o (T' T} Z,

I;;(0) = Z iz l,lkv”k’

=1 j=1 k=1

1,(0) = IzT] 6 =0,
I (9) = IT (9) =

132 (9) (9) Y Z i Z z/A¢uA [Z,k + Z !szn)

=1 j=1 k=1 1=k+1

with Ao B denoting the Hadamard product of matrix A and

B, Vi =

T,
Then the iterative algorithm is as follows.
Step 1. Initialize the starting values 8%, 1 and y©. Set
k=0.
Step 2. Compute X; with given A% and y®. Update 8 via

B =Y+ I O) U, (B; 4, 7)|ﬁ =50 (19)

Step 3. Given 8 = 8“", update A and 7y as
A(I«»l) /l(k)
(E)=( 1)
( L,(0) 1 (0) )(U (A;ﬁ,w)
L, (@) ;) U (y;8,

Step 4. Set k < k+ 1. Repeat steps 2 and 3 until a prespe-
cified convergence criterion is satisfied.

Note that A and y are updated together, which is caused by
their asymptotic dependence, as seen from Theorem 1 in Sec-
tion 3.3. It can only be ensured that this algorithm converges
to a local optimum which relies critically on the starting val-
ues. It is natural to choose the starting value of S as the least
square estimator in equation (10) with X;’s set as identity
matrices. Then, the starting value of y can be determined as-
suming T, =1,,, and the starting value of A can be given as
the least square estimator based on the residuals. The starting
estimates of 8 and A are clearly +/n-consistent. Moreover, the
negative log-likelihood function is asymptotically convex
around a small neighbourhood of true parameters, according
to the theoretical results in Theorem 1 in Section 3.3 and the
proofs in Appendix B. Then the final estimates via the iterat-
ive algorithm are guaranteed to be the global optima and more

efficient than the starting values in terms of the asymptotical
viewpoint. For simulation studies and real data analysis, con-

j-1
Oa,,

E ;'kqb,j,, and a; being the (7,k)th element of
Y

t=k+1

(11)

A=) =y ()
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vergence was usually achieved within several iterations.
3.3 Asymptotic properties

In this section, we establish the strong consistency and
asymptotic normality of the maximum likelihood estimators.
The following regularity conditions are imposed for the theor-
etical analysis.

(C1) The dimensions p, s and g of covariates x;;, z; and
w;y are fixed, n — 00, and max m; is bounded.

(C2) The parameter spalcééén(a of @ is a compact subset of
R, and the true parameter 6, = (8},A%,y!)" lies in the in-
terior of ©.

(C3) When n — oo, 1(6,) /n converges to a positive defin-
ite matrix 7 (6,).

Condition 1 is standard for practical longitudinal data ana-
lysis. Condition 2 is natural in the theoretical study of the
maximum likelihood estimation. Condition 3 is conventional
in regression analysis for modeling unbalanced longitudinal
data.

Theorem 1. If n — oo and regularity conditions (C1)-(C3)
hold, then (a) the maximum likelihood estimator

0= (,ET,’/TT,’V)T is strongly consistent for the true value
6, = 3,/13,75)T’ and (b) g= (ET,’/l\T,'y\T)T
normal, that is, Vi 9—00) — N1{0,7'(6,)} in distribution.

It can be easily seen that the Fisher information matrix
71 (6,) is a block matrix, more specifically,

1,6, 0 0
I(6,)= 0 I,0,) 1,(6,) |,
0 T30 15(60)

is asymptotically

from which g is asymptotically independent of 7 and 7,
whereas ] and y are not asymptotically independent. Since

9= (ET,’,fT v )T is a consistent estimator for 6,, the asymptot-
ic covariance matrix 7' can be consistently estimated by the
inverse of a matrix with block components

~ 1,(0)
n

-Zij =—=,i,j=123.

4 Laplace joint modeling approach

4.1 Laplace joint modeling model

In this section, we investigate the joint modeling approach
based on the multivariate Laplace distribution, which is use-
ful when the response variable has heavier tails. However,
there are several kinds of multivariate Laplace distributions,
which can be respectively regarded as a particular multivari-
ate Linnik distribution!”, a special case of the multivariate
power exponential (PE) distribution'*'"), a Gaussian scale
mixture!”, and so on". Among them, we adopt the special
case of the multivariate PE distribution.

If y; follows a m;-dimensional PE distribution, i = 1,...,n,
then its density function is

| 1
SO, Z,v) = K|Zi|7?exp{_§[(yi _Ni)TE;l (i _,ui)]u}a (12)

0306-5

where

m.
(™
m(z)

mim m;\’
2" F(1+—')
e 2u

K=

with the location vector u; € R, the positive definite disper-
sion matrix %, and v. When v = 1, (12) corresponds to a mul-
tivariate normal distribution. When v = 0.5, (12) is the dens-
ity function of a multivariate Laplace distribution, i.e.,
")
S Oom,Z,v) = T,zx
2t+migr 2 I (m;)

1 1 et 1
|2xlzexp{_§[())i_ﬂi) X (yl'_/li)]z}s (13)

then E(y;)= y, and var(y;)=4(m;+1)Z,. Based on the multivari-
ate Laplace distribution (13), the proposed AMCD of Z' (6)
and the joint model in Section 3.1, we can obtain the Laplace
joint modeling model (LIMM).

4.2 The quasi-Newton algorithm for maximum likeli-

hood estimation

Twice the negative log-likelihood function of the multivari-
ate Laplace distribution, except for a constant, can be written
as

n

" 1
~21,() = Z log|AT;'T;"A +Z (FA'TITA ). (14)
i=1 i=1
Let A, = r,.TA:IT,.TT \A;'r;. By taking partial derivatives of I, (6)
with respect to 8, 4 and 7, respectively, the maximum likeli-
hood estimating equations are

S, (B; A)—IZWIA_%(?“’TZ"( )=0
1 3V _2 - i 8,3 i Yi—Hi) =Y,

L g
2By =7 ) A Zih=5 3 711, =0,
i=1 i=1

oT "
L TTe=0. (15)
dy

L
S: )= 3 ZA *(g'®l,)

1
3

where A’ can be regarded as a weight, providing robustness
against outliers in the data.

We then estimate # by minimizing expression (14) via the
quasi-Newton algorithm. More specifically, the parameters in
6 can be split into 6, =8 and 6,; = (A7,9")", and solved se-
quentially with the other parameters held fixed. The detailed
algorithm is as follows.

Step 1. Initialize the parameters S, 1®and vy asin Sec-
tion 3.2, the inverse Hessian matrix H"” for 6, and H.) for 6,
as identity matrix. Set k = 0.

Step 2. For 6, =8, compute the score function

S =S (608) = 51 (81" %).
Step 3. Update the search direction

k) __ (k) @ (k)
py=-HSY,
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and compute the step size by an approximate line minimiza-
tion

o = argmin {21, (6" +a,p?.64)}.

O<ap <1

Step 4. Update 6, and the score function as
g(lkn) — e(lk) +a’(]k)p(lk)’S(]k+]) =S, (e(lkﬂ);e(;;)) =S, (0(k+1);,y(k),/1(k))'

Step 5. Update the inverse Hessian matrix via the BFGS
formula

@D _ @\ ([ gkt _ p®)"
)
(9(lk+1) _ 9<1k))T (S o) _ S(lk>) B
{Hik) (S(]k+l) _S(]k))} {Hik) (S(]k+l) _S(]A-))}T
(S (]k+l) _ S(]k))THik) (S (lk+l) _ S(lk))
(S(lkn) _ S(lk))TH(lk) (S(lkm _S(lk)) uu”,

H§k+l) — Hﬁk)+

where
0(]k+]) _ e(lk) Hﬁk) (S (lk+1) _ S(lk))
h (0(]k+1) _ e(lk))T (S (]k+l) _S(]k)) (S (Ik+l) _ S(Ik))TH:k) (S (lk+l) _S(lk)).

Step 6. For 0,; = @n,yn', compute the score function
S = 50 (6567) = (S2(A%587 9, S, (7384, A0 )
Step 7. Update the search direction
p(k> — _H(k)S(k)
23 23423

and compute the step size by an approximate line minimiza-
tion:
o) = arg min {—ZZL (0(,'””,0(2’;’ +a/23p(2’§))}.

O<az<l

Step 8. Update 6,; and the score function as
057" = 0 + a3y pi3.
S8 =80 (67300) =

(S2(/1(“1);ﬂ(k“),)/(Hl))T,S3(7(“”;ﬂ(k+“,/l(km)T)T.

Step 9. Update the inverse Hessian matrix via the BFGS
formula as in Step 5, with the subscript “1” replaced by “23”.

Step 10. Set k = k+1 and repeat Steps 2 to 9 until a pre-
specified convergence criterion is met.

Note that the BFGS algorithm is implemented in this sec-
tion since it is demonstrated to be one of the best quasi-New-
ton algorithms for solving unconstrained smooth optimiza-
tion problems and performs very well here. Alternative quasi-
Newton algorithms are also deserved to be investigated in the
future. For more details, see Refs. [17, 18].

5 Simulation studies

In this section, we investigate the finite-sample performance
of the proposed AMCD, compare the robustness of AMCD,

0306-6

MCD and ACD for modeling correlation matrices based on
various typical covariation structures, and compare the mod-
eling capacities of NJMM and LIMM with AMCD based on
different distributions.

Study 1. The 1000 replications of the datasets were gener-
ated from the following NJMM:

Yij =ﬁ0+xi/lﬁl+xi/2ﬁ2+xij3ﬁ3+r:j’ i=1’”"n’ j=1,~~,m,»,

where r; follows the proposed AMCD, i.e., expression (7),
with

lOg (dlzj) = /lo + Z/,‘l/l] + lez/lz + Z[/B/lfb

i = Yo+ Wi Y1 + Wi Ya-

Here, n=50,100, or 200, m;—1 ~binomial(6,0.8), and #;’s
were generated from the uniform distribution in the unit inter-
val. The covariates x;; = (x,v‘,v,,x,-,-z,x,-j,;)T were generated from
the multivariate normal distribution with mean zero, margin-
al variance 1 and correlation 0.5. In addition, we take z; = x;;
and wy;, = {l,t,-j —ty, (8 — t,»k)z}. In Table 1, “Bias” denotes the
average bias of the parameter estimates, and “SD” represents
the sample standard deviation of the estimates for the para-
meters, which can be regarded as the true standard deviation
of the resulting estimates. “SE” denotes the sample average of
the estimated standard errors by the formula, and “Std” rep-
resents the standard deviation of these standard errors. Table 1
indicates that the proposed AMCD approach results in un-
biased parameter estimates, and the standard error formula
works well, especially when n is large.

Study 2. We compare the performances of the proposed
AMCD with those of MCD and ACD based on different data-
sets generated from various types of covariation structures in
terms of the estimation robustness of the correlation matrices
against model misspecification of the innovation variances.
To assess the estimation accuracy of the correlation matrices,
we define the entropy loss function A, (R,,E,.) = trace
(R,-"E;) —log|R'|-m and the quadratic loss function
A, (R,.j?\i) = trace(R;‘ﬁ —Im,)z, where R, isthe true correla-
tion matrix and R, is an estimated correlation matrix. Both of
the loss functions are 0 when R, =R, and positive when
R, # E, It is obvious that a smaller loss implies better estim-
ates of R,. Furthermore, the loss functions for all subjects are

defined by L, = %EA, (R.R).i=1.2.

In the following'g:,1 we generated 1000 replications of the
datasets with n = 100 from the joint mean-covariance model
similar to that in Study 1, except that r;; follows respectively
the proposed AMCD, MCD and ACD. Then the estimates and
losses of the correlation matrices were computed respectively
based on the true model log (d’/) =+ +2p s + 25 A3
and the misspecified model log (dfj) = Ay +z;,4, for the innov-
ation variances. For comparison, the losses obtained from fit-
ting the true and misspecified models for the innovation vari-
ances are exhibited in Tables 2 and 3, respectively, where
ENL and QUL represent respectively the average of the en-
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Table 1. Simulation results for Study 1. All the results are multiplied by a factor 10%.
n=>50 n=100 n =200
True Bias SD SE (Std) Bias SD SE (Std) Bias SD SE (Std)
Bo 1 —-0.11 2.00 1.88 (0.19) 0.02 1.38 1.35(0.09) —0.01 0.96 0.96 (0.04)
Bi —0.6 -0.17 3.22 3.07 (0.38) 0.02 2.37 2.19(0.19) —0.02 1.53 1.54 (0.10)
B> 0.6 0.08 3.42 3.12(0.38) 0.01 232 2.22(0.18) 0.04 1.55 1.57 (0.09)
B3 0.4 0.09 3.44 3.13(0.35) —-0.03 243 2.25(0.18) 0.06 1.53 1.58 (0.09)
Ao -0.8 —3.88 8.64 7.73 (0.22) -2.21 6.42 5.50 (0.09) —-1.07 422 3.89(0.05)
A 0.8 0.50 8.91 7.98 (0.51) 0.27 6.06 5.71 (0.26) 0.41 423 4.05(0.13)
pY3 -0.5 —-0.59 8.66 7.99 (0.52) —-0.10 5.85 5.71 (0.26) —-0.09 422 4.04 (0.12)
A3 0.25 0.15 8.81 8.00 (0.53) —-0.10 6.27 5.72 (0.26) —0.14 427 4.05(0.12)
Y0 -0.5 —2.55 9.41 8.96 (0.32) —0.83 6.63 6.35(0.16) —-0.50 4.63 4.48 (0.08)
Y1 0.3 2.61 58.08 52.66 (2.37) 0.32 39.65 37.27 (1.18) —0.72 26.29 26.27 (0.56)
72 —-0.5 —6.35 72.12 64.96 (3.87) -1.71 49.57 45.92 (1.90) -0.22 32.53 32.30(0.93)
Table 2. Simulation results for Study 2. Fitting the true model for log(dfj).
AMCD MCD ACD
True structure
ENL QUL ENL QUL ENL QUL
0.0342 0.1239 0.3999 1.6446 0.1611 0.4953
AMCD (0.0287) (0.1415) (0.0949) (0.7985) (0.0355) (0.3158)
0.5481 2.7191 0.0432 0.1413 0.7785 4.9234
Mep (0.0868) (1.3806) (0.0307) (0.1545) (0.1191) (2.2544)
ACD 0.0807 0.1274 0.2208 0.4502 0.0359 0.0701
(0.0300) (0.1133) (0.0444) (0.2350) (0.0299) (0.0852)
Table 3. Simulation results for Study 2. Fitting Ao +zij141 for log(d7)).
AMCD MCD ACD
True structure ENL QUL ENL QUL ENL QUL
AMCD 0.0364 0.1348 0.4551 1.9058 0.1638 0.5323
(0.0308) (0.1584) (0.0974) (0.8514) (0.0375) (0.3441)
0.5551 2.8642 0.1051 0.3242 0.7857 5.1367
Mep (0.0908) (1.4454) (0.0350) (0.2610) (0.1215) (2.3220)
ACD 0.0819 0.1362 0.2411 0.4912 0.0364 0.0728
(0.0310) (0.1220) (0.0448) (0.2397) (0.0301) (0.0898)

tropy loss L, and quadratic loss L,, with empirical standard
errors in parentheses.

In terms of the average losses in Table 2, it is vital to know
the true covariation structure; that is, when the true covari-
ation structure follows AMCD, the losses of estimating the
correlation matrices increase when the covariation structure is
incorrectly decomposed based on MCD or ACD, and vice
versa. By comparing Table 2 with Table 3, we can analyze
the influence of model misspecification for the innovation
variances on estimating the correlation matrices. Specifically,
by comparing the left two AMCD columns of Table 2 with
those of Table 3, ENL and QUL both vary little, no matter
whether the true covariation structure is AMCD, MCD or
ACD; the losses in the right two ACD columns of Tables 2
and 3 also exhibit a similar pattern; however, the losses in the
middle two MCD columns of Tables 2 and 3 vary signific-
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antly. Thus, the estimation of the correlation matrices is ro-
bust with respect to the model misspecification for the innov-
ation variances when fitting the AMCD or ACD structure, but
is nevertheless not robust when fitting the MCD structure.

Stydy 3. We generated 1000 replications of the datasets
with n =100 respectively from several distributions, where
the joint model was the same as that in Study 1. Specifically,
y; follows respectively the multivariate normal distribution
(Scenario 1), Laplace distribution (Scenario 2) and PE distri-
bution with v =0.7 (Scenario 3), and we fitted NJMM and
LJMM under each scenario to compare thier modeling capa-
cities.

To assess the estimation accuracy of the parameters, Bias,
SD and mean squared errors (MSE) were calculated, and the
simulation results are displayed in Tables 4—6. From Table 4,
NJMM vyields smaller MSE than does LJIMM for all paramet-
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Table 4. Simulation results for Study 3. Fitting NJMM and LIMM based on the data generated from the multivariate normal distribution-Scenario 1.

NIMM LIMM
True Bias SD MSE Bias SD MSE
Bo 1 0.000293 0.013820 0.000191 0.000389 0.014523 0.000211
Bi —0.6 0.000956 0.023084 0.000534 0.001186 0.023680 0.000562
B2 0.6 —0.001044 0.022847 0.000523 —0.001132 0.023518 0.000554
B3 0.4 —0.000942 0.024125 0.000583 —0.001063 0.025185 0.000635
Ao -0.8 —0.018044 0.057580 0.003641 —3.284723 0.059723 10.792970
A 0.8 0.002058 0.061634 0.003803 0.002269 0.064317 0.004142
A -0.5 —0.001617 0.060490 0.003662 —0.002075 0.064486 0.004163
A3 0.25 0.002351 0.057719 0.003337 0.002540 0.061003 0.003728
Yo -0.5 —0.010487 0.063410 0.004131 —0.010345 0.064888 0.004318
Y1 0.3 —0.000795 0.379933 0.144350 0.000034 0.387449 0.150117
72 -0.5 —0.015246 0.473920 0.224833 —0.018321 0.486507 0.237025

Table 5. Simulation results for Study 3. Fitting NJMM and LJIMM based on the data generated from the multivariate Laplace distribution-Scenario 2.

NJMM LIMM
True Bias SD MSE Bias SD MSE
Bo 1 0.000443 0.074431 0.005540 —0.001020 0.070935 0.005033
Bi —0.6 0.001874 0.125683 0.015800 —0.000377 0.115993 0.013454
B2 0.6 —0.006187 0.120606 0.014584 —0.004163 0.112968 0.012779
B3 0.4 0.003073 0.124357 0.015474 0.004704 0.116733 0.013649
Ao -0.8 3.325543 0.090872 11.067496 —0.019765 0.085474 0.007696
A 0.8 0.000266 0.068353 0.004672 0.000632 0.063271 0.004004
A2 -0.5 —0.000353 0.068978 0.004758 —0.000868 0.065576 0.004301
A3 0.25 0.003889 0.067912 0.004627 0.003261 0.063900 0.004094
Y0 -0.5 —0.009415 0.072748 0.005381 —0.007799 0.069382 0.004875
71 0.3 —0.012116 0.428129 0.183441 —0.016835 0.406756 0.165733
72 -0.5 0.003418 0.527299 0.278056 0.011848 0.507051 0.257241
Table 6. Simulation results for Study 3. Fitting NJMM and LJMM based on the data generated from the multivariate PE distribution with v=0.7-Scen-
ario 3.
NJMM LIMM
True Bias SD MSE Bias SD MSE
Bo 1 0.000279 0.031374 0.000984 —0.000075 0.031226 0.000975
Bi —0.6 —0.000363 0.053292 0.002840 —0.001130 0.052419 0.002749
B 0.6 0.000324 0.053262 0.002837 0.001559 0.053214 0.002834
B3 0.4 —0.000064 0.054821 0.003005 —0.000298 0.053428 0.002855
Ao —-0.8 1.697678 0.076425 2.887951 —1.610802 0.075379 2.600366
A1 0.8 0.005810 0.065800 0.004363 0.006267 0.063930 0.004126
o -0.5 —0.001172 0.067431 0.004548 —0.001043 0.066281 0.004394
A3 0.25 0.000540 0.064320 0.004137 0.000625 0.063059 0.003977
Y0 -0.5 —0.007865 0.068495 0.004753 —0.007884 0.068537 0.004759
71 0.3 —0.000655 0.422247 0.178293 0.000933 0.421153 0.177371
Y2 -0.5 —0.019594 0.521888 0.272751 —0.022436 0.515721 0.266472
0306-8 DOI: 10.52396/JUSTC-2023-0127
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ers, when the data follows the multivariate normal distribu-
tion (Scenario 1). Moreover, Bias of NJMM and LJIMM are
generally small, except that Bias for A, when fitting LIMM
are rather large under Scenario 1, which might be due to the
influence of distribution misspecification and the difficulty of
estimating the constant term in innovation variance models.
From Table 5, we can carry out a similar discussion for Scen-
ario 2, and find out that LIMM outperforms NJMM when the
data follows the multivariate Laplace distribution. Table 6
shows that LJIMM has slightly smaller MSE than NJMM,
when the data follows the multivariate PE distribution with
v=0.7 (Scenario 3), which is between the multivariate nor-
mal distribution and the multivariate Laplace distribution.

6 Real data analysis

6.1 The cattle data

We applied the proposed AMCD approach to the balanced
cattle data, which was initially introduced in Ref. [19]. This
dataset consists of two treatment groups, A and B, and the
weights of each cattle were measured 11 times over a period
of 133 days. Notably, the 30 animals in group A were ana-
lyzed in Refs. [11, 20] and [8]. Pan and Mackenzie™ found
out that it is reasonable to adopt three polynomials for model-
ing jointly the mean, the log-innovation variances and the
autoregressive coefficients based on MCD, and the optimal
triplet of the polynomial orders is determined as (8,3,4) in
terms of the Bayesian information criterion (BIC).

From expression (8) based on AMCD, we can calculate the
corresponding innovation variances d;, and generalized
autoregressive parameters ¢, (j > k) of'the sample covari-
ance matrix. Fig. 1 displays log(dfj) versus time and ¢,
versus time lag, both indicate trends which might be properly
characterized by polynomials. Then we adopt three polynomials

@
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|

Log-innovat. var.

3.0
|

25
|

Time

Autoregres. coeffic.

Luetal
Vi; = Bo+Butiy+ -+ 6,17,
log(d?) = A+ At +-+ + AL,
G = Yo+ Vi (ty—ta) + - +y,(t; — t)' (16)

for modelling jointly the mean and the covariation structure

based on the proposed AMCD, and select the optimal model

in terms of

log(n)
n

2
BIC(p,s.q) = —;lmx+(P+S+Q+3)

)

where p, s and g are the three polynomial orders, and 7 is
the corresponding maximum log-likelihood. Then some mod-
el with the smallest BIC is generally judged to be the optimal
model, which can capture the dynamics much more precisely
and parsimoniously. Due to the asymptotic orthogonality of
the mean parameter and the covariation parameters, these two
kinds of parameters can be searched separately, which is more
computationally efficient. Note that p within the optimal
model in Refs. [20] and [8] are both 8, which motivates us to
first fix p = 8 and search for s and ¢. The optimal (s,q) is de-
termined to be (3,3) by comparing several candidate models,
and the major searching process is displayed in Table 7.
Then, we fix (s,q) = (3,3), search for p, and determine the
optimal order for AMCD as (p,s,q) = (8,3,3). Fig. | shows
the optimal AMCD-based fitted curves for log (dfj)’s and ¢’
s and their corresponding 95% pointwise confidence inter-
vals obtained using the bootstrapping method; these curves
capture the pattern well for the log-innovation variances and
rather well for the generalized autoregressive parameters.

The optimal order based on AMCD is slightly less than that
based on MCD, but identical to that based on ACD, which is
also determined by using a similar searching process. To
compare the performances of the aforementioned three de-
compositions, we regard the sample correlation matrix as the
true matrix, and still assess the estimation accuracy of the cor-

(b)

1.5

1.0

-0.5
|

Lag

Fig. 1. Cattle data: sample regressograms and fitted curves for (a) log-innovation variances and (b) autoregressive coefficients (solid lines, curves fitted
by the proposed AMCD method; dashed lines, 95% pointwise confidence intervals using the bootstrapping method).
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Table 7. Cattle data: comparison of various models based on the pro-

posed AMCD approach.

Poly (8,s,q) Number of parameters me BIC
8,1,1) 13 -808.07 55.35
(8,1,2) 14 -764.56 52.56
(8,1,3) 15 -750.13 51.71
(8,1,4) 16 —749.86 51.80
(8.2,1) 14 —806.79 55.37
(8,2,2) 15 -763.07 52.57
(8.2,3) 16 ~749.16 51.76
(8,2,4) 17 —749.00 51.86
(8,3,1) 15 -806.52 55.47
(8.3,2) 16 -760.96 52.54
(8,3.3)f 17 ~746.07 51.67
(8.3,4) 18 —745.82 51.76
(8.4.1) 16 —806.45 55.58
(842) 17 ~759.88 52.59
(84.3) 18 —746.06 51.78
(8.4.4) 19 —745.80 51.87

relation matrix by the entropy loss L, and quadratic loss L,.
The (L,,L,) values for the optimal models based on AMCD,
ACD and MCD are 3.0866 and 35.6300; 2.8660 and 30.8312;

and 1.9237 and 12.9392, respectively. Obviously, the MCD-
based model yields more accurate estimates of the correlation
matrix, and the AMCD and ACD-based models have similar
performances. This indicates that the MCD structure might be
more suitable for this dataset than AMCD and ACD, in terms
of the estimation accuracy of the correlation matrix. However,
when we keep p and ¢ fixed, and take the polynomial order
for the innovation variances as s = 1 rather than the optimal
order s =3, the (L,,L,)’s are repectively (3.0743, 31.8634),
(2.9381, 30.0376), and (2.8819, 29.2350). The estimation ac-
curacy of the correlation matrix for AMCD and ACD-based
models varies slightly, again implying robustness with re-
spect to the model misspecification of the innovation vari-
ances; while the losses for the MCD-based model increase
significantly which might lead to the opposite conclusion.

6.2 The sleep dose-response data

We apply NJMM and LIMM based on the proposed AMCD
to the sleep dose-response data, which was initially investig-
ated by Ref. [21] and subsequently analyzed in Ref. [22] us-
ing Bayesian inference for the joint model based on the ¢ dis-
tribution and MCD. The days of sleep deprivation and the
corresponding average reaction times were recorded for each
of the 18 participants in the 3-h group. Fig. 2a shows the tra-
jectories of the average reaction times over an equally spaced
10-day period, together with the mean profile plot and the
corresponding +1 standard deviations across the period.
There seem to be sudden jumps and drops in the trajectories
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Fig. 2. Sleep dose-response data: (a) trajectories of average reaction time; (b) sample regressograms for log-innovation variances; (c) sample regresso-

grams for autoregressive coefficients.
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of the first and sixth subjects, which may be obvious outliers
and thus not able to be properly handled using NJMM.

The mean response varies linearly over time, and thus can
be modeled by a 1st-degree polynomial in time. Fig. 2b and ¢
show the sample regressograms for log-innovation variances
and autoregressive coefficients, implying higher-order poly-
nomial functions in time or time lag. Hence, it is suitable to
adopt three polynomials expressed as (16) with p =1 and s,¢q
to be determined. We fitted the Sleep dose-response data us-
ing AMCD-based NJMM and LIMM for various degrees of
the Poly(1,s,q) models. The numbers of parameters, 7 and
BIC(1, s,q) values for the searched Poly(1, s,g)’s are listed in
Table 8, where the BIC values are calculated via formula
(17). According to the BIC wvalues, Poly(1,3,4) and
Poly(1,3,2) are the best for NJMM and LIMM, respectively,
and this data is fitted significantly better when using LIMM.
Table 9 displays the maximum likelihood estimates and
standard errors when fitting respectively NJMM and LIMM
with the above two best polynomials. Note that NJMM and
LJMM have similar parameter estimates. However, the stand-
ard errors of J and y for LJIMM are smaller than those of
NIJMM with Poly(1,3,2); the standard errors of ) for LIMM

are slightly larger than those of NJMM with Poly(1,3,4), and
the standard errors of y for LIMM are still smaller in this
case. This indicates convincingly that parameter estimates of
LIJMM always possess lower variability for this data.

7 Conclusions

In longitudinal data analysis, we always suffer from various
kinds of covariation structure and need to choose the most
suitable decomposition among the candidates. If the covari-
ance matrix possesses a typical structure, we might apply the
MACD method; otherwise, we might adopt the MCD method
for the precision matrix. Furthermore, when we are interested
in robust estimation of the correlation matrix against model
misspecification of the innovation variances, we can apply the
ACD method to the covariance matrix. However, the decom-
position of the precision matrix targeting the above robust-
ness has been rather less investigated. In this paper, we have
proposed AMCD of the precision matrix and established its
role in providing robust estimator for the correlation matrix.
In addition, we have investigated the AMCD-based LIMM
which may achieve both the aformentioned robust estimation
and robustness to outliers in the data.

Table 8. Sleep dose-response data: comparison of various Poly(1,s,q) choices between NJMM and LIMM.

[ BIC
Poly(1,s,q) Number of parameters

NIMM LIMM NIMM LIMM
(L,1,1) 6 -710.32 —454.85 79.89 51.50
(1,1,2) 7 —698.82 —441.85 78.77 50.22
(1,1,3) 8 —698.07 —441.25 78.85 50.31
(1,1,4) 9 —696.49 —440.01 78.83 50.34
(1,1,5) 10 —695.85 —439.72 78.92 50.46
(1,2,1) 7 —=710.13 —454.47 80.03 51.62
(1,2,2) 8 —698.66 —441.54 78.91 50.34
(1,2,3) 9 —697.86 —440.87 78.99 50.43
(1,2,4) 10 —696.40 —439.79 78.98 50.47
(1,2,5) 11 —695.78 —439.52 79.08 50.60
(1,3,1) 8 —709.45 —454.21 80.11 51.75
(1,3,2) 9 —695.00 —438.03 78.67 50.11
(1,3,3) 10 —694.00 —437.36 78.72 50.20
(1,3,4) 11 —691.02 —435.40 78.55 50.14
(1,3,5) 12 —690.22 —435.04 78.62 50.27
(1,4,1) 9 —708.21 —453.47 80.13 51.83
(1,4,2) 10 —694.34 —437.76 78.76 50.25
(1,4,3) 11 —693.20 —436.96 78.79 50.32
(1,4,4) 12 —690.52 —435.11 78.65 50.27
(1,4,5) 13 —689.79 —434.79 78.73 50.40
(1,5,1) 10 —=707.14 —452.99 80.18 51.94
(1,5,2) 11 —693.42 —437.21 78.81 50.35
(1,5,3) 12 —692.06 —436.24 78.82 50.40
(1,5,4) 13 —689.65 —434.64 78.72 50.38
(1,5,5) 14 —688.83 —434.26 78.78 50.50
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Table 9. Sleep dose-response data: parameter estimates for NJMM and LIMM with the two best polynomials.
Poly(1,3,2) Poly(1,3,4)
NJIMM LIMM NJIMM LIMM
MLE SE MLE SE MLE SE MLE SE
Bo 240.9311 6.7036 241.1218 7.7784 241.6758 6.3496 241.1834 7.7073
Bi 10.1691 1.6517 9.7037 1.6478 10.2647 1.6540 9.8365 1.6582
Ao 7.5886 0.6562 4.1020 0.6333 7.8139 0.5422 4.1793 0.5746
A —1.0052 0.4517 —1.0521 0.4055 —1.2803 0.3616 —1.1990 0.3734
A 0.2199 0.0875 0.2107 0.0783 0.2827 0.0753 0.2470 0.0767
A3 —0.0126 0.0050 —0.0118 0.0045 —0.0165 0.0044 —0.0141 0.0045
Y0 0.8835 0.1715 0.9978 0.1456 2.1703 0.5384 2.0808 0.4754
Y1 —0.3654 0.0978 —0.4222 0.0795 —2.0456 0.7714 —1.8478 0.6405
72 0.0349 0.0112 0.0407 0.0090 0.6838 0.3205 0.5931 0.2577
73 —0.0956 0.0495 —0.0814 0.0393
iz 0.0047 0.0025 0.0040 0.0020

Recently, an autoregressive moving average Cholesky de-
composition (ARMACD) has been proposed in Ref. [23] ;
this decomposition is more general than both MACD and
MCD. Therefore, it is worthwhile to develop a robust estima-
tion of the correlation matrix on the basis of ARMACD in the
future. Furthermore, these decompositions correspond to vari-
ous time series models, then various robust time series ap-
proaches could also be generalized for robust estimation of
the correlation, covariance or precision matrix. In addition,
longitudinal data may suffer from missingness, such as in-
formative dropouts®!. Then we need to specify a suitable dro-
pout mechanism, establish the complete data log-likelihood,
and implement an EM algorithm to calculate the maximum
likelihood estimates. Moreover, heterogeneity is also de-
served to be investigated, not only for the mean parameters,
but also for the covariation structures. The finite mixture
model™ based on NJMM or LIMM with AMCD may per-
form well, which is left for future research.
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Appendix A: The score and expectation of the Hessian matrices

It is trivial to compute U, (B;,4) and I;, (6). Since X, relies only on y and 4, it can be easily obtained that

1,(0)=-E

Similarly, 7,;(0) = 0. As € = T\A;'r;, it is easy to see that

(o) =-2{3

Tazl
Z 9B oA ()’i_lli)}=

m;

—21(0)—Zlog|A2|+Ze € _ZZ log(d2) +€2).

=l j=1

Thus, the partial derivative of /(#) with respect to A can be expressed as

V=5

=1 j=1

Z buy

With € = T\A;'r,, it can be easily obtained that €; =

66,-,- 1y

a1~ ag,

6 T
or equivalently in the matrix form -~ ) /1

Uz (/laﬁ97) = % 2 {_iZij + iz,‘k[
i=1 =1 k=1

m; a
Z(z,,+z L ) (A.1)
. Thus,

LS (A2)
= 5 DiikZiks .
24&ddy

1 .
=— EZ,T diag(A;'r)T'. Then,

-1 )
;¢Uk] : (;j] - Z@/t;_;)} =

L
zZz}(h,.—lm,),
i=1

where the sx 1 vector i, = diag (T T.A; ' rirf A).
From (A.1), we have

L,(0)=-E

=1 j=1
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i

where A o B denotes the Hadamard product of matrices A and B.
Similarly, we have

Us(y;8.) = —Zi ?

=1 j=1

e, (A3)
where
Je;; L
—— == ) Vi€ (A4)
oy ;
Oay, (96T tﬁT T
with v, = — — ¢, and a,, being the (¢,k)th element of 7", or in the matrix form 5 by =—(€®]1 ) - T

dy
From (A.3) and (A.4), it is easy to see that

t=k+1

&1
L,(0)=—E
=@ (6767T)

&€ (')e,., O€;
=2 ‘Z/‘ (”0767 dy a_yT)
S5

=1 j=1 k=1

From (A.2), (A.3), (A.4) and the fact that E (er]) = T;TA,, i.e.,

0, k<j,
E(eifrik) = dy, k= j,
dikaikja k> j,

we have

0l
1,(0) = —E(ayw)—

DMIPARRCRE NS

=1 j=1

_% Zn: i i Vii®ije [Zer + 2 a"kzz) '

=l j=1 k=1 1=k+1

Appendix B: Proof

Proof of Theorem 1. (a) Let 6 = (8",4",y")" and [,(0) = logf,(y,,0), i = 1,...,n. Then, ignoring the constant m,log(2m), we ob-
tain that

1 1
1;(0) = _Elog(lziD - E{yi ~H B} E = u(xB)).

Thus, the mean and variance of [, when6 = 6, are

1 1 1
E{l.(0)} = —Elog(lzfl) - Etr(E,.“EO,) - 5{11 (xB) = (o) Y E (e (xB) = p (xBy)),
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1 2 Ty-1 -1
var, {;(0)} = Etr(z;lzm) +Hu(xp)—u(xB,)) DN (xB) — (x5},

where Z, = AT 'T;"A; and Xy, = A, T, T, Ay 1t follows from the compactness of the parameter space and the boundedness of the
covariates that var, (/,) < k,, for all i, where «, is a constant. Therefore, we obtain that

)

vl

l'2
i=1

Thus, by Kolmogorov’s strong law of large numbers, we obtain that
| |
Z;l"(e)_ ;;Eo{z,.(e)} - 0,a5.. (A.5)

Then we prove the consistency of g, which is similar to that of Theorem 1 in Ref. [26]. Note that the above constant «, is inde-
pendent of 8. By the compactness of ® and a similar argument as that of Ref. [27], the convergence in (A.5) is uniform in ©.

1 n
Furthermore, it can be shown that 0 ZEO{I,- (0)} is equicontinuous in 6. Since © is compact, and by condition (C3), it can be

i=1
1 n
easily seen that 0 Z Eo{l;(0)} converges to a finite limit,
i=1
1
K,(0) =lim- » E,{l(0)}.

ey
i=1

Then according to Ref. [28], the foregoing convergence is uniform in ® and the limit K, (6) is continuous in 6. Therefore, by ex-
pression (A.5), we obtain that

L
- 1.(6 K,(0),a.s.
n;,(w 2(0),a.5

uniformly in ®. Due to the compactness of ®, K, (6) is uniformly continuous in ©.
Since the true parameter 6, lies in ®, we have

K, (6) < K, (6))
for any 6, that is, K,(6) has a uniform maximum at 6,. Since K,(6) is continuous and ® is compact, K, (6,) is bounded away
from its maximum for any 6 bounded away from 6,; that is, for any § > 0, there exists & > 0 such that
K\ (0) <K,(0)—¢ (A.6)

for |0—-6,| > 6.

For a contraction, assume that there is a set of positive probability where g (y) does not converge to 6,. For each y in the set
there exists a subsequence {m,} C {n} and a limit point 6, # 6, in ® such that '9; (y) — 6, # 6, Because 'g\m ) produces a maxim-
um for every m,, we obtain that

1 & 1 &
o Zl (6. 0)> - Zl ).

Then by uniform convergence and continuity of the limit, for this y we can obtain that

K, () > K, (6,),

but this contradicts (A.6), and thus it can be concluded that g, (y) is strongly consistent for 6.

(b) First, it can be proven that the following necessary conditions for asymptotic normality hold under regular conditions
(CDH—(C3).

(B1) The first and the second derivatives of f; (y;,6) with respect to  exist.

(B2) The expectation of the first derivative of /;(6) with respect to € equals zero.

(B3) The information matrices satisfy
01;(0) 0L (0) | _ &1(9)
E{ a0 o6 }_ E{aeam}’

(B4) As n — oo, we have
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31 (6) 31,(0)
_Z 006" _Z {aeaeﬂ} 0.a5.

uniformly in ©.
(B5) The following asymptotic result holds:

d

NA{0,1(6,)},

A
%Z 6

where the asymptotic covariance matrix 7 (6,) is positive definite.
(B1)—(B3) are straightforward under (C1)—(C2). (B4) can be shown in a similar way to the proof of (A.5). In the following, we
show that (BS5) holds. In fact, at 6 = 6,,
3
Eo{ } <k

for any ¢ € R"***_where « is a positive constant independent of i. Furthermore, at 6 = 6,, we have

6=,

T2
¥ 06

1 Z:Var0 {WTM} =y {n' 1O}y = ' T (6)y >0,
n 4= a0

due to the positive definiteness of 7 (6,) in (C3). Therefore, (B5) follows from the Liapounov multivariate central limit theorem.

In the following, we prove the asymptotic normality of the maximum likelihood estimator g under regular conditions
(B1)—(B5). The proof is similar to that of Theorem 2 in Ref. [26] and we only state the key points. Since 5” is a consistent se-
quence of roots to equations (9), with probability 1, we can concentrate on a neighborhood of 6,. Define

G

(D) T

9
0=0,+{(6,-61)

where ¢ € [0, 1], for any 6, and 6,. Then, by the fundamental theorem of calculus,
1 5
¢.(D-¢,0 = [ g

Setting 6, = 6, and 6, zal, and summing over i from 1 to n, we can obtain that

ol (0)
F2 O —-a(i-a),

6=6g

where

&L,(6)
" :f Z 9060"

with 6, =6,+ ¢ (@ - 90), and 5 is the root to (9). By (B2)—(B4), it can be shown that

=0,

-Q,-n'1(6) 50,
where the convergence holds when 6 = 6,. By (C4), we obtain that when 6 = 6,,
-Q, 5 1(6)). (A7)
Thus, conclusion (b) follows from (A.7) and (BS5).
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