ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Chemistry 30 June 2022

Multifunctional artificial nacre via biomimetic matrix-directed mineralization

Cite this:
https://doi.org/10.52396/JUSTC-2022-0022
More Information
  • Author Bio:

    Yu-Feng Meng received his Ph.D. degree in Inorganic Chemistry from University of Science and Technology of China in 2022. His research focuses mainly on biomimetic materials design

    Li-Bo Mao received his Ph.D. degree in Inorganic Chemistry from University of Science and Technology of China (USTC) in 2016. He is currently an assistant professor in the Hefei National Laboratory for Physical Sciences at the Microscale, USTC. His research focuses mainly on structure-property relationship of biological materials, preparation and application of biomimetic structural materials and biomineralization

    Shu-Hong Yu completed his Ph.D. in Inorganic Chemistry in 1998 from University of Science and Technology of China (USTC). He was appointed as a full professor in 2002 and the Cheung Kong Professorship in 2006 by the Ministry of Education in the Department of Chemistry, USTC. He was elected as an academician of Chinese Academy of Sciences in 2019. Currently, he is leading the Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, USTC

  • Corresponding author: E-mail: maolb@ustc.edu.cn; E-mail: shyu@ustc.edu.cn
  • Received Date: 24 January 2022
  • Accepted Date: 07 March 2022
  • Available Online: 30 June 2022
  • Natural nacre, one of the most studied biological structural materials with delicate hierarchical structures and extraordinary performance, has inspired the design and fabrication of artificial structural ceramics with high fracture toughness. However, to meet the diverse requirements of different applications, future structural materials must be multifunctional with superior mechanical properties, such as strength, hardness, and toughness. Herein, based on the matrix-directed mineralization method for producing biomimetic structural materials, we introduce nanoparticles with different inherent functions into the platelets of artificial nacre via the co-mineralization of aragonite and the nanoparticles. Besides their enhanced mechanical properties, the obtained artificial nacre materials also exhibit different functions depending on the type of the nanoparticles. To extend the versatility of this strategy, the effects of nanoparticles of different sizes and zeta potentials on mineralization are also analyzed. This universal strategy can be applied to the fabrication of other types of functionalized biomimetic structural ceramics that have potential applications in various fields, such as biomedical science.
    Artificial nacre with multiple functions and improved mechanical performance can be produced through a co-mineralization strategy.
    Natural nacre, one of the most studied biological structural materials with delicate hierarchical structures and extraordinary performance, has inspired the design and fabrication of artificial structural ceramics with high fracture toughness. However, to meet the diverse requirements of different applications, future structural materials must be multifunctional with superior mechanical properties, such as strength, hardness, and toughness. Herein, based on the matrix-directed mineralization method for producing biomimetic structural materials, we introduce nanoparticles with different inherent functions into the platelets of artificial nacre via the co-mineralization of aragonite and the nanoparticles. Besides their enhanced mechanical properties, the obtained artificial nacre materials also exhibit different functions depending on the type of the nanoparticles. To extend the versatility of this strategy, the effects of nanoparticles of different sizes and zeta potentials on mineralization are also analyzed. This universal strategy can be applied to the fabrication of other types of functionalized biomimetic structural ceramics that have potential applications in various fields, such as biomedical science.
    • Inspired by the in vivo growth of biological ceramics, a matrix-directed co-mineralization strategy is proposed to fabricate artificial nacre samples incorporated with different functional nanoparticles.
    • The artificial nacre samples have similar functions as original nanoparticles, demonstrating their successful functionalization through the proposed strategy.
    • By properly controlling the size and surface charge of the incorporated nanoparticles, the mechanical performance of the nanoparticle-incorporated artificial nacre samples can be significantly improved compared with that without nanoparticles.

  • loading
  • [1]
    Tertuliano O A, Greer, J R. The nanocomposite nature of bone drives its strength and damage resistance. Nat. Mater., 2016, 15 (11): 1195–1202. doi: 10.1038/nmat4719
    [2]
    Reznikov N, Bilton M, Lari L, et al. Fractal-like hierarchical organization of bone begins at the nanoscale. Science, 2018, 360 (6388): eaao2189. doi: 10.1126/science.aao2189
    [3]
    Duer M, Veis A. Bone mineralization: Water brings order. Nat. Mater., 2013, 12 (12): 1081–1082. doi: 10.1038/nmat3822
    [4]
    DeRocher K A, Smeets P J M, Goodge B H, et al. Chemical gradients in human enamel crystallites. Nature, 2020, 583 (7814): 66–71. doi: 10.1038/s41586-020-2433-3
    [5]
    Gordon L M, Cohen M J, MacRenaris K W, et al. Amorphous intergranular phases control the properties of rodent tooth enamel. Science, 2015, 347 (6223): 746–750. doi: 10.1126/science.1258950
    [6]
    La Fontaine A, Zavgorodniy A, Liu H, et al. Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel. Sci. Adv., 2016, 2 (9): e1601145. doi: 10.1126/sciadv.1601145
    [7]
    Li L, Ortiz C. Biological design for simultaneous optical transparency and mechanical robustness in the shell of placuna placenta. Adv. Mater., 2013, 25 (16): 2344–2350. doi: 10.1002/adma.201204589
    [8]
    Bayerlein B, Zaslansky P, Dauphin Y, et al. Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growth. Nat. Mater., 2014, 13 (12): 1102–1107. doi: 10.1038/nmat4110
    [9]
    Sun J, Bhushan B. Hierarchical structure and mechanical properties of nacre: A review. RSC Adv., 2012, 2 (20): 7617–7632. doi: 10.1039/C2RA20218B
    [10]
    Liu Z, Meyers M A, Zhang Z, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Prog. Mater. Sci., 2017, 88: 467–498. doi: 10.1016/j.pmatsci.2017.04.013
    [11]
    Eder M, Amini S, Fratzl P. Biological composites-complex structures for functional diversity. Science, 2018, 362 (6414): 543–547. doi: 10.1126/science.aat8297
    [12]
    Quan H, Kisailus D, Meyers M A. Hydration-induced reversible deformation of biological materials. Nat. Rev. Mater., 2020, 6 (3): 264–283. doi: 10.1038/s41578-020-00251-2
    [13]
    Amini S, Tadayon M, Idapalapati S, et al. The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club. Nat. Mater., 2015, 14 (9): 943–950. doi: 10.1038/nmat4309
    [14]
    Pro J W, Barthelat F. The fracture mechanics of biological and bioinspired materials. MRS Bull., 2019, 44 (1): 46–52. doi: 10.1557/mrs.2018.324
    [15]
    Wegst U G, Bai H, Saiz E, et al. Bioinspired structural materials. Nat. Mater., 2015, 14 (1): 23–36. doi: 10.1038/nmat4089
    [16]
    Ritchie R O. The conflicts between strength and toughness. Nat. Mater., 2011, 10 (11): 817–822. doi: 10.1038/nmat3115
    [17]
    Mao L B, Gao H L, Yao H B, et al. Synthetic nacre by predesigned matrix-directed mineralization. Science, 2016, 354: 107–110. doi: 10.1126/science.aaf8991
    [18]
    Munch E, Launey M E, Alsem D H, et al. Tough, bio-inspired hybrid materials. Science, 2008, 322 (5907): 1516–1520. doi: 10.1126/science.1164865
    [19]
    Bouville F, Maire E, Meille S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat. Mater., 2014, 13 (5): 508–514. doi: 10.1038/nmat3915
    [20]
    Gao H L, Chen S M, Mao L B, et al. Mass production of bulk artificial nacre with excellent mechanical properties. Nat. Commun., 2017, 8 (1): 287. doi: 10.1038/s41467-017-00392-z
    [21]
    Yin Z, Hannard F, Barthelat F. Impact-resistant nacre-like transparent materials. Science, 2019, 364 (6447): 1260–1263. doi: 10.1126/science.aaw8988
    [22]
    Le Ferrand H, Bouville F, Niebel T P, et al. Magnetically assisted slip casting of bioinspired heterogeneous composites. Nat. Mater., 2015, 14: 1172–1179. doi: 10.1038/nmat4419
    [23]
    Torres A M, Trikanad A A, Aubin C A, et al. Bone-inspired microarchitectures achieve enhanced fatigue life. Proc. Natl. Acad. Sci. U. S. A., 2019, 116 (49): 24457–24462. doi: 10.1073/pnas.1905814116
    [24]
    Kim Y Y, Ganesan K, Yang P, et al. An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals. Nat. Mater., 2011, 10 (11): 890–896. doi: 10.1038/nmat3103
    [25]
    Pokroy B, Quintana J P, Caspi E N, et al. Anisotropic lattice distortions in biogenic aragonite. Nat. Mater., 2004, 3 (12): 900–902. doi: 10.1038/nmat1263
    [26]
    Polishchuk I, Bracha A A, Bloch L, et al. Coherently aligned nanoparticles within a biogenic single crystal: A biological prestressing strategy. Science, 2017, 358 (6368): 1294–1298. doi: 10.1126/science.aaj2156
    [27]
    Rockwood D N, Preda R C, Yucel T, et al. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc., 2011, 6 (10): 1612–1631. doi: 10.1038/nprot.2011.379
    [28]
    Lloyd J A, Ng S H, Davis T J, et al. Size selective adsorption of gold nanoparticles by electrostatic assembly. J. Phys. Chem. C, 2017, 121 (4): 2437–2443. doi: 10.1021/acs.jpcc.6b10218
    [29]
    Ichikawa R, Kajiyama S, Iimura M, et al. Tuning the c-axis orientation of calcium phosphate hybrid thin films using polymer templates. Langmuir, 2019, 35 (11): 4077–4084. doi: 10.1021/acs.langmuir.8b04318
    [30]
    Xu J, Yan C, Zhang F, et al. Testing the cation-hydration effect on the crystallization of Ca-Mg-CO3 systems. Proc. Natl. Acad. Sci. U. S. A., 2013, 110 (44): 17750–17755. doi: 10.1073/pnas.1307612110
    [31]
    Kim Y Y, Ganesan K, Yang P, et al. An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals. Nat. Mater., 2011, 10 (11): 890–896. doi: 10.1038/nmat3103
    [32]
    Huang W Q, Huang Z M, Cheng H Q, et al. Electronic states and curved surface effect of silicon quantum dots. Appl. Phys. Lett., 2012, 101 (17): 171601. doi: 10.1063/1.4761945
    [33]
    Meng Y F, Zhu Y B, Zhou L C, et al. Artificial nacre with high toughness amplification factor: Residual stress-engineering sparks enhanced extrinsic toughening mechanisms. Adv. Mater., 2021, 34: 2108267. doi: 10.1002/adma.202108267
    [34]
    Kulak A N, Semsarilar M, Kim Y Y, et al. One-pot synthesis of an inorganic heterostructure: Uniform occlusion of magnetite nanoparticles within calcite single crystals. Chem. Sci., 2014, 5 (2): 738–743. doi: 10.1039/C3SC52615A
    [35]
    Kim Y Y, Darkins R, Broad A, et al. Hydroxyl-rich macromolecules enable the bio-inspired synthesis of single crystal nanocomposites. Nat. Commun., 2019, 10 (1): 5682. doi: 10.1038/s41467-019-13422-9
  • 加载中

Catalog

    Figure  1.  Fabrication scheme of the artificial nacre.

    Figure  2.  Microstructure comparison between natural nacre and artificial nacre. (a) Abalone nacre. (b, c) Artificial nacre: (b) QDN and (c) FeN. The inset in (b) shows the PL of the original QDs. (d–f) Fracture surface of the (d) abalone nacre, (e) QDN, and (f) FeN. (g–i) Aragonitic layer of the (g) abalone nacre, (h) the QDN, and (i) FeN. (j–l) Enlarged micrographs of the aragonite platelets of the (j) abalone nacre, (k) QDN, and (l) FeN.

    Figure  3.  Characteristics of the artificial nacre. (a) XRD patterns for the QDN and FeN. (b) Photoluminescence spectra of the QDN. (c) Magnetic hysteresis loops of the FeN.

    Figure  4.  Composition analysis of the artificial nacre with different NPs.

    Figure  5.  Influence of the sizes and surface charges of the NPs on the microstructures of the artificial nacre. (a–h) Fracture surface of the artificial nacre: (a) FeN10−, (b) FeN10+, (c) FeN25−, (d) FeN25+, (e) FeN80−, (f) FeN80+, (g) FeN150−, and (h) FeN350−. FeN10− is the artificial nacre incorporated with ~ 10 nm negatively charged NPs.

    Figure  6.  Morphology of the NPs with different surface properties in the solution. (a–h) SEM images of the dried mineralizing solution samples with (a) Fe3O4[10]− NPs, (b) Fe3O4[25]− NPs, (c) Fe3O4[80]− NPs, (d) Fe3O4[150]− NPs, (e) Fe3O4[350]− NPs, (f) Fe3O4[10]+ NPs, (g) Fe3O4[25]+ NPs, and (h) Fe3O4[80]+ NPs. Fe3O4[10]− denotes the negatively charged Fe3O4 NPs with approximately 10 nm diameter.

    Figure  7.  Mechanical performance of artificial nacre: (a) Vickers hardness (at a load of HV0.3) and (b) flexural strength of different artificial nacre samples.

    [1]
    Tertuliano O A, Greer, J R. The nanocomposite nature of bone drives its strength and damage resistance. Nat. Mater., 2016, 15 (11): 1195–1202. doi: 10.1038/nmat4719
    [2]
    Reznikov N, Bilton M, Lari L, et al. Fractal-like hierarchical organization of bone begins at the nanoscale. Science, 2018, 360 (6388): eaao2189. doi: 10.1126/science.aao2189
    [3]
    Duer M, Veis A. Bone mineralization: Water brings order. Nat. Mater., 2013, 12 (12): 1081–1082. doi: 10.1038/nmat3822
    [4]
    DeRocher K A, Smeets P J M, Goodge B H, et al. Chemical gradients in human enamel crystallites. Nature, 2020, 583 (7814): 66–71. doi: 10.1038/s41586-020-2433-3
    [5]
    Gordon L M, Cohen M J, MacRenaris K W, et al. Amorphous intergranular phases control the properties of rodent tooth enamel. Science, 2015, 347 (6223): 746–750. doi: 10.1126/science.1258950
    [6]
    La Fontaine A, Zavgorodniy A, Liu H, et al. Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel. Sci. Adv., 2016, 2 (9): e1601145. doi: 10.1126/sciadv.1601145
    [7]
    Li L, Ortiz C. Biological design for simultaneous optical transparency and mechanical robustness in the shell of placuna placenta. Adv. Mater., 2013, 25 (16): 2344–2350. doi: 10.1002/adma.201204589
    [8]
    Bayerlein B, Zaslansky P, Dauphin Y, et al. Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growth. Nat. Mater., 2014, 13 (12): 1102–1107. doi: 10.1038/nmat4110
    [9]
    Sun J, Bhushan B. Hierarchical structure and mechanical properties of nacre: A review. RSC Adv., 2012, 2 (20): 7617–7632. doi: 10.1039/C2RA20218B
    [10]
    Liu Z, Meyers M A, Zhang Z, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Prog. Mater. Sci., 2017, 88: 467–498. doi: 10.1016/j.pmatsci.2017.04.013
    [11]
    Eder M, Amini S, Fratzl P. Biological composites-complex structures for functional diversity. Science, 2018, 362 (6414): 543–547. doi: 10.1126/science.aat8297
    [12]
    Quan H, Kisailus D, Meyers M A. Hydration-induced reversible deformation of biological materials. Nat. Rev. Mater., 2020, 6 (3): 264–283. doi: 10.1038/s41578-020-00251-2
    [13]
    Amini S, Tadayon M, Idapalapati S, et al. The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club. Nat. Mater., 2015, 14 (9): 943–950. doi: 10.1038/nmat4309
    [14]
    Pro J W, Barthelat F. The fracture mechanics of biological and bioinspired materials. MRS Bull., 2019, 44 (1): 46–52. doi: 10.1557/mrs.2018.324
    [15]
    Wegst U G, Bai H, Saiz E, et al. Bioinspired structural materials. Nat. Mater., 2015, 14 (1): 23–36. doi: 10.1038/nmat4089
    [16]
    Ritchie R O. The conflicts between strength and toughness. Nat. Mater., 2011, 10 (11): 817–822. doi: 10.1038/nmat3115
    [17]
    Mao L B, Gao H L, Yao H B, et al. Synthetic nacre by predesigned matrix-directed mineralization. Science, 2016, 354: 107–110. doi: 10.1126/science.aaf8991
    [18]
    Munch E, Launey M E, Alsem D H, et al. Tough, bio-inspired hybrid materials. Science, 2008, 322 (5907): 1516–1520. doi: 10.1126/science.1164865
    [19]
    Bouville F, Maire E, Meille S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat. Mater., 2014, 13 (5): 508–514. doi: 10.1038/nmat3915
    [20]
    Gao H L, Chen S M, Mao L B, et al. Mass production of bulk artificial nacre with excellent mechanical properties. Nat. Commun., 2017, 8 (1): 287. doi: 10.1038/s41467-017-00392-z
    [21]
    Yin Z, Hannard F, Barthelat F. Impact-resistant nacre-like transparent materials. Science, 2019, 364 (6447): 1260–1263. doi: 10.1126/science.aaw8988
    [22]
    Le Ferrand H, Bouville F, Niebel T P, et al. Magnetically assisted slip casting of bioinspired heterogeneous composites. Nat. Mater., 2015, 14: 1172–1179. doi: 10.1038/nmat4419
    [23]
    Torres A M, Trikanad A A, Aubin C A, et al. Bone-inspired microarchitectures achieve enhanced fatigue life. Proc. Natl. Acad. Sci. U. S. A., 2019, 116 (49): 24457–24462. doi: 10.1073/pnas.1905814116
    [24]
    Kim Y Y, Ganesan K, Yang P, et al. An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals. Nat. Mater., 2011, 10 (11): 890–896. doi: 10.1038/nmat3103
    [25]
    Pokroy B, Quintana J P, Caspi E N, et al. Anisotropic lattice distortions in biogenic aragonite. Nat. Mater., 2004, 3 (12): 900–902. doi: 10.1038/nmat1263
    [26]
    Polishchuk I, Bracha A A, Bloch L, et al. Coherently aligned nanoparticles within a biogenic single crystal: A biological prestressing strategy. Science, 2017, 358 (6368): 1294–1298. doi: 10.1126/science.aaj2156
    [27]
    Rockwood D N, Preda R C, Yucel T, et al. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc., 2011, 6 (10): 1612–1631. doi: 10.1038/nprot.2011.379
    [28]
    Lloyd J A, Ng S H, Davis T J, et al. Size selective adsorption of gold nanoparticles by electrostatic assembly. J. Phys. Chem. C, 2017, 121 (4): 2437–2443. doi: 10.1021/acs.jpcc.6b10218
    [29]
    Ichikawa R, Kajiyama S, Iimura M, et al. Tuning the c-axis orientation of calcium phosphate hybrid thin films using polymer templates. Langmuir, 2019, 35 (11): 4077–4084. doi: 10.1021/acs.langmuir.8b04318
    [30]
    Xu J, Yan C, Zhang F, et al. Testing the cation-hydration effect on the crystallization of Ca-Mg-CO3 systems. Proc. Natl. Acad. Sci. U. S. A., 2013, 110 (44): 17750–17755. doi: 10.1073/pnas.1307612110
    [31]
    Kim Y Y, Ganesan K, Yang P, et al. An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals. Nat. Mater., 2011, 10 (11): 890–896. doi: 10.1038/nmat3103
    [32]
    Huang W Q, Huang Z M, Cheng H Q, et al. Electronic states and curved surface effect of silicon quantum dots. Appl. Phys. Lett., 2012, 101 (17): 171601. doi: 10.1063/1.4761945
    [33]
    Meng Y F, Zhu Y B, Zhou L C, et al. Artificial nacre with high toughness amplification factor: Residual stress-engineering sparks enhanced extrinsic toughening mechanisms. Adv. Mater., 2021, 34: 2108267. doi: 10.1002/adma.202108267
    [34]
    Kulak A N, Semsarilar M, Kim Y Y, et al. One-pot synthesis of an inorganic heterostructure: Uniform occlusion of magnetite nanoparticles within calcite single crystals. Chem. Sci., 2014, 5 (2): 738–743. doi: 10.1039/C3SC52615A
    [35]
    Kim Y Y, Darkins R, Broad A, et al. Hydroxyl-rich macromolecules enable the bio-inspired synthesis of single crystal nanocomposites. Nat. Commun., 2019, 10 (1): 5682. doi: 10.1038/s41467-019-13422-9

    Article Metrics

    Article views (744) PDF downloads(1630)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return