ISSN 0253-2778

CN 34-1054/N

open

Size-reduction of Rydberg collective excited states in cold atomic system

  • The collective effect of large amounts of atoms exhibit an enhanced interaction between light and atoms. This holds great interest in quantum optics, and quantum information. When a collective excited state of a group of atoms during Rabi oscillation is varying, the oscillation exhibits rich dynamics. Here, we experimentally observe a size-reduction effect of the Rydberg collective state during Rabi oscillation in cold atomic dilute gases. The Rydberg collective state was first created by the Rydberg quantum memory, and we observed a decreased oscillation frequency effect by measuring the time traces of the retrieved light field amplitude, which exhibited chirped characteristics. This is caused by the simultaneous decay to the overall ground state and the overall loss of atoms. The observed oscillations are dependent on the effective Rabi frequency and detuning of the coupling laser, and the dephasing from inhomogeneous broadening. The reported results show the potential prospects of studying the dynamics of the collective effect of a large amount of atoms and manipulating a single-photon wave-packet based on the interaction between light and Rydberg atoms.
  • loading

Catalog

    {{if article.pdfAccess}}
    {{if article.articleBusiness.pdfLink && article.articleBusiness.pdfLink != ''}} {{else}} {{/if}}PDF
    {{/if}}
    XML

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return