[1] |
Rochman C M, Browne M A, Halpern B S, et al. Classify plastic waste as hazardous. Nature, 2013, 494(7436): 169-171.
|
[2] |
Uhrin A V, Schellinger J. Marine debris impacts to a tidal fringing-marsh in North Carolina. Marine Pollution Bulletin, 2011, 62(12): 2605-2610.
|
[3] |
Browne M A, Dissanayake A, Galloway T S, et al. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environmental Science & Technology, 2008, 42(13): 5026-5031.
|
[4] |
Lithner D, Larsson A, Dave G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of the Total Environment, 2011, 409(18): 3309-3324.
|
[5] |
Teuten E L, Saquing J M, Knappe D R U, et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009, 364(1526): 2027-2045.
|
[6] |
Browne M A, Crump P, Niven S J, et al. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environmental Science & Technology, 2011, 45(21): 9175-9179.
|
[7] |
Pauly J L, Stegmeier S J, Allaart H A, et al. Inhaled cellulosic and plastic fibers found in human lung tissue. Cancer Epidemiology Biomarkers & Prevention, 1998, 7(5): 419-428.
|
[8] |
Mettang T, Thomas S, Kiefer T, et al. Uraemic pruritus and exposure to di(2-ethylhexyl)phthalate (DEHP) in haemodialysis patients. Nephrology Dialysis Transplantation, 1996, 11(12): 2439-2443.
|
[9] |
Mohanty A K, Vivekanandhan S, Pin J M, et al. Composites from renewable and sustainable resources: Challenges and innovations. Science, 2018, 362(6414): 536-542.
|
[10] |
Moon R J, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40(7): 3941-3994.
|
[11] |
Xu Z P, Zheng Q S. Micro- and nano- mechanics in China: A brief review of recent progress and perspectives. Science China-Physics Mechanics & Astronomy, 2018, 61(7): 18-31.
|
[12] |
Zhu H L, Luo W, CiesielskI P N, et al. Wood-derived materials for green electronics, biological devices, and energy applications. Chemical Reviews, 2016, 116(16): 9305-9374.
|
[13] |
Mayer G. Rigid biological systems as models for synthetic composites. Science, 2005, 310(5751): 1144-1147.
|
[14] |
FRatzl P, Weinkamer R. Nature's hierarchical materials. Progress in Materials Science, 2007, 52(8): 1263-1334.
|
[15] |
Barthelat F. Biomimetics for next generation materials. Philosophical Transactions of the Royal Society A, Mathematical Physical and Engineering Sciences, 2007, 365(1861): 2907-2919.
|
[16] |
Chen P Y, Lin A Y M, Lin Y S, et al. Structure and mechanical properties of selected biological materials. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1(3): 208-226.
|
[17] |
Espinosa H D, Rim J E, Barthelat F, et al. Merger of structure and material in nacre and bone–Perspectives on de novo biomimetic materials. Progress in Materials Science, 2009, 54(8): 1059-1100.
|
[18] |
Duan bo, Tu H, Zhang Lina. Material research progress of the sustainable polymer-cellulose. Acta Polymerica Sinica, 2020, 51(1): 66-86(Chinese).
|
[19] |
Favier V, Canova G R, Cavaille J Y, et al. Nanocomposite materials from latex and cellulose whiskers. Polymers for Advanced Technologies, 1995, 6(5): 351-355.
|
[20] |
Wu Z Y, Liang H W, Chen L F, et al. Bacterial cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials. Accounts of Chemical Research, 2016, 49(1): 96-105.
|
[21] |
Nardecchia S, Carriazo D, Ferrer M L, et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: Synthesis and applications. Chemical Society Reviews, 2013, 42(2): 794-830.
|
[22] |
Biener J, Stadermann M, Suss M, et al. Advanced carbon aerogels for energy applications. Energy & Environmental Science, 2011, 4(3): 656-667.
|
[23] |
Chabot V, Higgins D, Yu A P, et al. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment. Energy & Environmental Science, 2014, 7(5): 1564-1596.
|
[24] |
Huang Y, Zhu C L, Yang J Z, et al. Recent advances in bacterial cellulose. Cellulose, 2014, 21(1): 1-30.
|
[25] |
Hu W L, Chen S Y, Yang J X, et al. Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydrate Polymers, 2014, 101: 1043-1060.
|
[26] |
Ansell M P. Wood microstructure–A cellular composite. Wood Composites. Woodhead Publishing, 2015: 3-26.
|
[27] |
Salmén L. Wood cell wall structure and organisation in relation to mechanics. Plant Biomechanics. Springer, 2018: 3-19.
|
[28] |
Li T, Zhang X, Lacey S D, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nature Materials, 2019, 18(6): 608-613.
|
[29] |
Martin-Martinez F J. Designing nanocellulose materials from the molecular scale. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(28): 7174-7175.
|
[30] |
Hou Y, Guan Q F, Xia J, et al. Strengthening and toughening hierarchical nanocellulose via humidity-mediated interface. ACS Nano, 2021, 15(1): 1310-1320.
|
[31] |
Meng Q H, Wang T J. Mechanics of strong and tough cellulose nanopaper. Applied Mechanics Reviews, 2019, 71(4): 040801.
|
[32] |
Dufresne A, Cavaille J Y, Vignon M R. Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. Journal of Applied Polymer Science, 1997, 64(6): 1185-1194.
|
[33] |
Taniguchi T, Okamura K. New films produced from microfibrillated natural fibres. Polymer International, 1998, 47(3): 291-294.
|
[34] |
Revol J F, Bradford H, Giasson J, et al. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. International Journal of Biological Macromolecules, 1992, 14(3): 170-172.
|
[35] |
王莎. 高性能纤维素材料的构建与性能研究[D] . 广州:华南理工大学, 2018.
|
[36] |
Osullivan A C. Cellulose: the structure slowly unravels. Cellulose, 1997, 4(3): 173-207.
|
[37] |
Klemm D, Heublein B, Fink H P, et al. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie-International Edition, 2005, 44(22): 3358-3393.
|
[38] |
Ishikawa A, Okano T, Sugiyama J. Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer, 1997, 38(2): 463-468.
|
[39] |
Koyama M, Sugiyama J, Itoh T. Systematic survey on crystalline features of algal celluloses. Cellulose, 1997, 4(2): 147-160.
|
[40] |
Horikawa Y, Sugiyama J. Localization of crystalline allomorphs in cellulose microfibril. Biomacromolecules, 2009, 10(8): 2235-2239.
|
[41] |
Moon R J, Martini A, Nairn J, et al. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40(7): 3941-3994.
|
[42] |
Imai T, Putaux J L, Sugiyama J. Geometric phase analysis of lattice images from algal cellulose microfibrils. Polymer, 2003, 44(6): 1871-1879.
|
[43] |
Duan B, Chang C Y, Ding B B, et al. High strength films with gas-barrier fabricated from chitin solution dissolved at low temperature. Journal of Materials Chemistry A, 2013, 1(5): 1867-1874.
|
[44] |
Lani N S, Ngadi N, Johari A, et al. Isolation, characterization, and application of nanocellulose from oil palm empty fruit bunch fiber as nanocomposites. Journal of Nanomaterials, 2014: 702538.
|
[45] |
Bacakova L, Pajorova J, Bacakova M, et al. Versatile application of nanocellulose: From industry to skin tissue engineering and wound healing. Nanomaterials, 2019, 9(2): 164.
|
[46] |
Abitbol T, Rivkin A, Cao Y F, et al. Nanocellulose, a tiny fiber with huge applications. Current Opinion in Biotechnology, 2016, 39: 76-88.
|
[47] |
Naz S, Ali J S, Zia M. Nanocellulose isolation characterization and applications: A journey from non-remedial to biomedical claims. Bio-Design and Manufacturing, 2019, 2(3): 187-212.
|
[48] |
Trache D, Tarchoun A F, Derradji M, et al. Nanocellulose: From fundamentals to advanced applications. Frontiers in Chemistry, 2020, 8: 33.
|
[49] |
Guo A F, Sun Z H, Sathitsuksanoh N, et al. A review on the application of nanocellulose in cementitious materials. Nanomaterials, 2020, 10(12): 2476.
|
[50] |
Martin-Martinez F J, Jin K, Barreiro D L, et al. The rise of hierarchical nanostructured materials from renewable sources: learning from nature. ACS Nano, 2018, 12(8): 7425-7433.
|
[51] |
Djahedi C, Berglund L A, Wohlert J. Molecular deformation mechanisms in cellulose allomorphs and the role of hydrogen bonds. Carbohydrate Polymers, 2015, 130: 175-182.
|
[52] |
Hofstetter K, Hinterstoisser B, Salmen L. Moisture uptake in native cellulose—The roles of different hydrogen bonds: a dynamic FT-IR study using Deuterium exchange. Cellulose, 2006, 13(2): 131-145.
|
[53] |
Nishiyama Y, Langan P, Wada M, et al. Looking at hydrogen bonds in cellulose. Acta Crystallographica Section D-Biological Crystallography, 2010, 66: 1172-1177.
|
[54] |
Djahedi C, Bergenstrahle-Wohlert M, Berglund L A, et al. Role of hydrogen bonding in cellulose deformation: the leverage effect analyzed by molecular modeling. Cellulose, 2016, 23(4): 2315-2323.
|
[55] |
Kovalenko V I. Crystalline cellulose: Structure and hydrogen bonds. Russian Chemical Reviews, 2010, 79(3): 231-241.
|
[56] |
Kondo T. Hydrogen bonds in regioselectively substituted cellulose derivatives. Journal of Polymer Science Part B-Polymer Physics, 1994, 32(7): 1229-1236.
|
[57] |
Roig F, Dantras E, Dandurand J, et al. Influence of hydrogen bonds on glass transition and dielectric relaxations of cellulose. Journal of Physics D-Applied Physics, 2011, 44(4): 045403.
|
[58] |
Hou Y, He Z, Zhu Y, et al. Intrinsic kink deformation in nanocellulose. Carbohydrate Polymers, 2021, 273: 118578.
|
[59] |
Ciesielski P N, Wagner R, Bharadwaj V S, et al. Nanomechanics of cellulose deformation reveal molecular defects that facilitate natural deconstruction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(20): 9825-9830.
|
[60] |
Bu L, Himmel M E, Crowley M F. The molecular origins of twist in cellulose I-beta. Carbohydrate Polymers, 2015, 125: 146-152.
|
[61] |
Dumitrica T. Intrinsic twist in Ibeta cellulose microfibrils by tight-binding objective boundary calculations. Carbohydrate Polymers, 2020, 230: 115624.
|
[62] |
Anggara K, Zhu Y, Fittolani G, et al. Identifying the origin of local flexibility in a carbohydrate polymer. Proceedings of the National Academy of Sciences, 2021, 118(23): e2102168118.
|
[63] |
Zhao D Q, Deng Y, Han D L, et al. Exploring structural variations of hydrogen-bonding patterns in cellulose during mechanical pulp refining of tobacco stems. Carbohydrate Polymers, 2019, 204: 247-254.
|
[64] |
Kamide K, Okajima K, Kowsaka K. Dissolution of natural cellulose into aqueous alkali solution—Role of super-molecular structure of cellulose. Polymer Journal, 1992, 24(1): 71-86.
|
[65] |
Chundawat S P S, Bellesia G, Uppugundla N, et al. Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. Journal of the American Chemical Society, 2011, 133(29): 11163-11174.
|
[66] |
Hosoya T, Sakaki S. Levoglucosan formation from crystalline cellulose: Importance of a hydrogen bonding network in the reaction. Chemsuschem, 2013, 6(12): 2356-2368.
|
[67] |
Sinko R, Keten S. Traction-separation laws and stick-slip shear phenomenon of interfaces between cellulose nanocrystals. Journal of the Mechanics and Physics of Solids, 2015, 78: 526-539.
|
[68] |
何泽洲. 非共价界面层状纳米复合材料的多尺度力学与设计[D] . 合肥: 中国科学技术大学, 2021.
|
[69] |
He Z Z, Zhu Y B, Xia J, et al. Optimization design on simultaneously strengthening and toughening graphene-based nacre-like materials through noncovalent interaction. Journal of the Mechanics and Physics of Solids, 2019, 133: 103706.
|
[70] |
Zhu H L, Zhu S Z, Jia Z, et al. Anomalous scaling law of strength and toughness of cellulose nanopaper. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(29): 8971-8976.
|
[71] |
Barthelat F, Yin Z, Buehler M J. Structure and mechanics of interfaces in biological materials. Nature Reviews Materials, 2016, 1(4): 1-16.
|
[72] |
Dastjerdi A K, Rabiei R, Barthelat F. The weak interfaces within tough natural composites: Experiments on three types of nacre. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 19: 50-60.
|
[73] |
Cox H L. The elasticity and strength of paper and other fibrous materials British Journal of Applied Physics. British Journal of Applied Physics, 1952, 3(3): 72-79.
|
[74] |
He Z Z, Zhu Y B, Wu H G. Edge effect on interlayer shear in multilayer two-dimensional material assemblies. International Journal of Solids and Structures, 2020, 204: 128-137.
|
[75] |
He Z Z, Zhu Y B, Wu H A. A universal mechanical framework for noncovalent interface in laminated nanocomposites. Journal of the Mechanics and Physics of Solids, 2022, 158: 104560.
|
[76] |
Meng Q H, Shi X H. A microstructure-based constitutive model of anisotropic cellulose nanopaper with aligned nanofibers. Extreme Mechanics Letters, 2021, 43: 101158.
|
[77] |
Mittal N, Ansari F, Gowda V K, et al. Multiscale control of nanocellulose assembly: Transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano, 2018, 12(7): 6378-6388.
|
[78] |
Meng Q H, Li B, Li T, et al. A multiscale crack-bridging model of cellulose nanopaper. Journal of the Mechanics and Physics of Solids, 2017, 103: 22-39.
|
[79] |
Meng Q H, Li B, Li T, et al. Effects of nanofiber orientations on the fracture toughness of cellulose nanopaper. Engineering Fracture Mechanics, 2018, 194: 350-361.
|
[80] |
Suksangpanya N, Yaraghi N A, Kisailus D, et al. Twisting cracks in Bouligand structures. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76: 38-57.
|
[81] |
Song Z Q, Ni Y, Cai S Q. Fracture modes and hybrid toughening mechanisms in oscillated/twisted plywood structure. Acta Biomaterialia, 2019, 91: 284-293.
|
[82] |
Hou Y Z, Guan Q F, Xia J, et al. Strengthening and toughening hierarchical nanocellulose via humidity-mediated interface. ACS Nano, 2021, 15(1): 1310-1320.
|
[83] |
Wang S, Jiang F, Xu X, et al. Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Advanced Materials, 2017, 29(35): 1702498.
|
[84] |
Jia C, Chen C, Kuang Y, et al. From wood to textiles: Top-down assembly of aligned cellulose nanofibers. Advanced Materials, 2018, 30(30): e1801347.
|
[85] |
Gao H-L, Zhao R, Cui C, et al. Bioinspired hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers. National Science Review, 2020, 7(1): 73-83.
|
[86] |
Mittal N, Benselfelt T, Ansari F, et al. Ion-specific assembly of strong, tough, and stiff biofibers. Angewandte Chemie, 2019, 58(51): 18562-18569.
|
[87] |
Wang S, Li T, Chen C, et al. Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers. Advanced Functional Materials, 2018, 28(24): 1707491.
|
[88] |
Ye D, Lei X, Li T, et al. Ultrahigh tough, super clear, and highly anisotropic nanofiber-structured regenerated cellulose films. ACS Nano, 2019, 13(4): 4843-4853.
|
[89] |
Chen F, Xiang W, Sawada D, et al. Exploring large ductility in cellulose nanopaper combining high toughness and strength. ACS Nano, 2020, 14(9): 11150-11159.
|
[90] |
Zhou Y, Chen C, Zhu S, et al. A printed, recyclable, ultra-strong, and ultra-tough graphite structural material. Materials Today, 2019, 30: 17-25.
|
[91] |
Song J, Chen C, Zhu S, et al. Processing bulk natural wood into a high-performance structural material. Nature, 2018, 554(7691): 224-228.
|
[92] |
Guan Q F, Yang H B, Han Z M, et al. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Science Advances, 2020, 6(18): eaaz1114.
|
[93] |
Guan Q F, Han Z-M, Yang H-B, et al. Regenerated isotropic wood. National Science Review, 2021, 8(7): 132-140.
|
[94] |
Guan Q F, Yang H B, Han Z M, et al. An all-natural bioinspired structural material for plastic replacement. Nature Communications, 2020, 11(1): 5401.
|
[95] |
Xiao S, Chen C, Xia Q, et al. Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science, 2021, 374(6566): 465-471.
|
[96] |
Yang C, Wu Q, Xie W, et al. Copper-coordinated cellulose ion conductors for solid-state batteries. Nature, 2021, 598(7882): 590-596.
|
[97] |
Chen C, Song J, Cheng J, et al. Highly elastic hydrated cellulosic materials with durable compressibility and tunable conductivity. ACS nano, 2020, 14(12): 16723-16734.
|
[98] |
Li T, Zhai Y, He S M, et al. A radiative cooling structural material. Science, 2019, 364(6442): 760-763.
|
[99] |
Kuang Y, Chen C, He S, et al. A high-performance self-regenerating solar evaporator for continuous water desalination. Advanced Materials, 2019, 31(23): e1900498.
|
[100] |
Zhu M, Song J, Li T, et al. Highly anisotropic, highly transparent wood composites. Advanced Materials, 2016, 28(26): 5181-5187.
|
[101] |
Mi R, Chen C, Keplinger T, et al. Scalable aesthetic transparent wood for energy efficient buildings. Nature Communications, 2020, 11(1): 1-9.
|
[102] |
Ray U, Zhu S Z, Pang Z Q, et al. Mechanics design in cellulose-enabled high-performance functional materials. Advanced Materials, 2021, 33(28): 2002504.
|
[103] |
Paakko M, Ankerfors M, Kosonen H, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 2007, 8(6): 1934-1941.
|
[104] |
Fang Z Q, Li B, Liu Y, et al. Critical role of degree of polymerization of cellulose in super-strong nanocellulose films. Matter, 2020, 2(4): 1000-1014.
|
[105] |
Henriksson M, Berglund L A, Isaksson P, et al. Cellulose nanopaper structures of high toughness. Biomacromolecules, 2008, 9(6): 1579-1585.
|
[106] |
Galland S, Berthold F, Prakobna K, et al. Holocellulose nanofibers of high molar mass and small diameter for high-strength nanopaper. Biomacromolecules, 2015, 16(8): 2427-2435.
|
[107] |
Ozkan M, Borghei M, Karakoc A, et al. Films based on crosslinked TEMPO-oxidized cellulose and predictive analysis via machine learning. Scientific Reports, 2018, 8(1): 1-9.
|
[108] |
Ozkan M, Karakoc A, Borghei M, et al. Machine learning assisted design of Tailor-made nanocellulose films: A combination of experimental and computational studies. Polymer Composites, 2019, 40(10): 4013-4022.
|
[109] |
Lamm M E, Li K, Qian J, et al. Recent advances in functional materials through cellulose nanofiber templating. Advanced Materials, 2021, 33(12) : 2005538.
|
[1] |
Rochman C M, Browne M A, Halpern B S, et al. Classify plastic waste as hazardous. Nature, 2013, 494(7436): 169-171.
|
[2] |
Uhrin A V, Schellinger J. Marine debris impacts to a tidal fringing-marsh in North Carolina. Marine Pollution Bulletin, 2011, 62(12): 2605-2610.
|
[3] |
Browne M A, Dissanayake A, Galloway T S, et al. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environmental Science & Technology, 2008, 42(13): 5026-5031.
|
[4] |
Lithner D, Larsson A, Dave G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of the Total Environment, 2011, 409(18): 3309-3324.
|
[5] |
Teuten E L, Saquing J M, Knappe D R U, et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009, 364(1526): 2027-2045.
|
[6] |
Browne M A, Crump P, Niven S J, et al. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environmental Science & Technology, 2011, 45(21): 9175-9179.
|
[7] |
Pauly J L, Stegmeier S J, Allaart H A, et al. Inhaled cellulosic and plastic fibers found in human lung tissue. Cancer Epidemiology Biomarkers & Prevention, 1998, 7(5): 419-428.
|
[8] |
Mettang T, Thomas S, Kiefer T, et al. Uraemic pruritus and exposure to di(2-ethylhexyl)phthalate (DEHP) in haemodialysis patients. Nephrology Dialysis Transplantation, 1996, 11(12): 2439-2443.
|
[9] |
Mohanty A K, Vivekanandhan S, Pin J M, et al. Composites from renewable and sustainable resources: Challenges and innovations. Science, 2018, 362(6414): 536-542.
|
[10] |
Moon R J, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40(7): 3941-3994.
|
[11] |
Xu Z P, Zheng Q S. Micro- and nano- mechanics in China: A brief review of recent progress and perspectives. Science China-Physics Mechanics & Astronomy, 2018, 61(7): 18-31.
|
[12] |
Zhu H L, Luo W, CiesielskI P N, et al. Wood-derived materials for green electronics, biological devices, and energy applications. Chemical Reviews, 2016, 116(16): 9305-9374.
|
[13] |
Mayer G. Rigid biological systems as models for synthetic composites. Science, 2005, 310(5751): 1144-1147.
|
[14] |
FRatzl P, Weinkamer R. Nature's hierarchical materials. Progress in Materials Science, 2007, 52(8): 1263-1334.
|
[15] |
Barthelat F. Biomimetics for next generation materials. Philosophical Transactions of the Royal Society A, Mathematical Physical and Engineering Sciences, 2007, 365(1861): 2907-2919.
|
[16] |
Chen P Y, Lin A Y M, Lin Y S, et al. Structure and mechanical properties of selected biological materials. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1(3): 208-226.
|
[17] |
Espinosa H D, Rim J E, Barthelat F, et al. Merger of structure and material in nacre and bone–Perspectives on de novo biomimetic materials. Progress in Materials Science, 2009, 54(8): 1059-1100.
|
[18] |
Duan bo, Tu H, Zhang Lina. Material research progress of the sustainable polymer-cellulose. Acta Polymerica Sinica, 2020, 51(1): 66-86(Chinese).
|
[19] |
Favier V, Canova G R, Cavaille J Y, et al. Nanocomposite materials from latex and cellulose whiskers. Polymers for Advanced Technologies, 1995, 6(5): 351-355.
|
[20] |
Wu Z Y, Liang H W, Chen L F, et al. Bacterial cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials. Accounts of Chemical Research, 2016, 49(1): 96-105.
|
[21] |
Nardecchia S, Carriazo D, Ferrer M L, et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: Synthesis and applications. Chemical Society Reviews, 2013, 42(2): 794-830.
|
[22] |
Biener J, Stadermann M, Suss M, et al. Advanced carbon aerogels for energy applications. Energy & Environmental Science, 2011, 4(3): 656-667.
|
[23] |
Chabot V, Higgins D, Yu A P, et al. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment. Energy & Environmental Science, 2014, 7(5): 1564-1596.
|
[24] |
Huang Y, Zhu C L, Yang J Z, et al. Recent advances in bacterial cellulose. Cellulose, 2014, 21(1): 1-30.
|
[25] |
Hu W L, Chen S Y, Yang J X, et al. Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydrate Polymers, 2014, 101: 1043-1060.
|
[26] |
Ansell M P. Wood microstructure–A cellular composite. Wood Composites. Woodhead Publishing, 2015: 3-26.
|
[27] |
Salmén L. Wood cell wall structure and organisation in relation to mechanics. Plant Biomechanics. Springer, 2018: 3-19.
|
[28] |
Li T, Zhang X, Lacey S D, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nature Materials, 2019, 18(6): 608-613.
|
[29] |
Martin-Martinez F J. Designing nanocellulose materials from the molecular scale. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(28): 7174-7175.
|
[30] |
Hou Y, Guan Q F, Xia J, et al. Strengthening and toughening hierarchical nanocellulose via humidity-mediated interface. ACS Nano, 2021, 15(1): 1310-1320.
|
[31] |
Meng Q H, Wang T J. Mechanics of strong and tough cellulose nanopaper. Applied Mechanics Reviews, 2019, 71(4): 040801.
|
[32] |
Dufresne A, Cavaille J Y, Vignon M R. Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. Journal of Applied Polymer Science, 1997, 64(6): 1185-1194.
|
[33] |
Taniguchi T, Okamura K. New films produced from microfibrillated natural fibres. Polymer International, 1998, 47(3): 291-294.
|
[34] |
Revol J F, Bradford H, Giasson J, et al. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. International Journal of Biological Macromolecules, 1992, 14(3): 170-172.
|
[35] |
王莎. 高性能纤维素材料的构建与性能研究[D] . 广州:华南理工大学, 2018.
|
[36] |
Osullivan A C. Cellulose: the structure slowly unravels. Cellulose, 1997, 4(3): 173-207.
|
[37] |
Klemm D, Heublein B, Fink H P, et al. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie-International Edition, 2005, 44(22): 3358-3393.
|
[38] |
Ishikawa A, Okano T, Sugiyama J. Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer, 1997, 38(2): 463-468.
|
[39] |
Koyama M, Sugiyama J, Itoh T. Systematic survey on crystalline features of algal celluloses. Cellulose, 1997, 4(2): 147-160.
|
[40] |
Horikawa Y, Sugiyama J. Localization of crystalline allomorphs in cellulose microfibril. Biomacromolecules, 2009, 10(8): 2235-2239.
|
[41] |
Moon R J, Martini A, Nairn J, et al. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40(7): 3941-3994.
|
[42] |
Imai T, Putaux J L, Sugiyama J. Geometric phase analysis of lattice images from algal cellulose microfibrils. Polymer, 2003, 44(6): 1871-1879.
|
[43] |
Duan B, Chang C Y, Ding B B, et al. High strength films with gas-barrier fabricated from chitin solution dissolved at low temperature. Journal of Materials Chemistry A, 2013, 1(5): 1867-1874.
|
[44] |
Lani N S, Ngadi N, Johari A, et al. Isolation, characterization, and application of nanocellulose from oil palm empty fruit bunch fiber as nanocomposites. Journal of Nanomaterials, 2014: 702538.
|
[45] |
Bacakova L, Pajorova J, Bacakova M, et al. Versatile application of nanocellulose: From industry to skin tissue engineering and wound healing. Nanomaterials, 2019, 9(2): 164.
|
[46] |
Abitbol T, Rivkin A, Cao Y F, et al. Nanocellulose, a tiny fiber with huge applications. Current Opinion in Biotechnology, 2016, 39: 76-88.
|
[47] |
Naz S, Ali J S, Zia M. Nanocellulose isolation characterization and applications: A journey from non-remedial to biomedical claims. Bio-Design and Manufacturing, 2019, 2(3): 187-212.
|
[48] |
Trache D, Tarchoun A F, Derradji M, et al. Nanocellulose: From fundamentals to advanced applications. Frontiers in Chemistry, 2020, 8: 33.
|
[49] |
Guo A F, Sun Z H, Sathitsuksanoh N, et al. A review on the application of nanocellulose in cementitious materials. Nanomaterials, 2020, 10(12): 2476.
|
[50] |
Martin-Martinez F J, Jin K, Barreiro D L, et al. The rise of hierarchical nanostructured materials from renewable sources: learning from nature. ACS Nano, 2018, 12(8): 7425-7433.
|
[51] |
Djahedi C, Berglund L A, Wohlert J. Molecular deformation mechanisms in cellulose allomorphs and the role of hydrogen bonds. Carbohydrate Polymers, 2015, 130: 175-182.
|
[52] |
Hofstetter K, Hinterstoisser B, Salmen L. Moisture uptake in native cellulose—The roles of different hydrogen bonds: a dynamic FT-IR study using Deuterium exchange. Cellulose, 2006, 13(2): 131-145.
|
[53] |
Nishiyama Y, Langan P, Wada M, et al. Looking at hydrogen bonds in cellulose. Acta Crystallographica Section D-Biological Crystallography, 2010, 66: 1172-1177.
|
[54] |
Djahedi C, Bergenstrahle-Wohlert M, Berglund L A, et al. Role of hydrogen bonding in cellulose deformation: the leverage effect analyzed by molecular modeling. Cellulose, 2016, 23(4): 2315-2323.
|
[55] |
Kovalenko V I. Crystalline cellulose: Structure and hydrogen bonds. Russian Chemical Reviews, 2010, 79(3): 231-241.
|
[56] |
Kondo T. Hydrogen bonds in regioselectively substituted cellulose derivatives. Journal of Polymer Science Part B-Polymer Physics, 1994, 32(7): 1229-1236.
|
[57] |
Roig F, Dantras E, Dandurand J, et al. Influence of hydrogen bonds on glass transition and dielectric relaxations of cellulose. Journal of Physics D-Applied Physics, 2011, 44(4): 045403.
|
[58] |
Hou Y, He Z, Zhu Y, et al. Intrinsic kink deformation in nanocellulose. Carbohydrate Polymers, 2021, 273: 118578.
|
[59] |
Ciesielski P N, Wagner R, Bharadwaj V S, et al. Nanomechanics of cellulose deformation reveal molecular defects that facilitate natural deconstruction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(20): 9825-9830.
|
[60] |
Bu L, Himmel M E, Crowley M F. The molecular origins of twist in cellulose I-beta. Carbohydrate Polymers, 2015, 125: 146-152.
|
[61] |
Dumitrica T. Intrinsic twist in Ibeta cellulose microfibrils by tight-binding objective boundary calculations. Carbohydrate Polymers, 2020, 230: 115624.
|
[62] |
Anggara K, Zhu Y, Fittolani G, et al. Identifying the origin of local flexibility in a carbohydrate polymer. Proceedings of the National Academy of Sciences, 2021, 118(23): e2102168118.
|
[63] |
Zhao D Q, Deng Y, Han D L, et al. Exploring structural variations of hydrogen-bonding patterns in cellulose during mechanical pulp refining of tobacco stems. Carbohydrate Polymers, 2019, 204: 247-254.
|
[64] |
Kamide K, Okajima K, Kowsaka K. Dissolution of natural cellulose into aqueous alkali solution—Role of super-molecular structure of cellulose. Polymer Journal, 1992, 24(1): 71-86.
|
[65] |
Chundawat S P S, Bellesia G, Uppugundla N, et al. Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. Journal of the American Chemical Society, 2011, 133(29): 11163-11174.
|
[66] |
Hosoya T, Sakaki S. Levoglucosan formation from crystalline cellulose: Importance of a hydrogen bonding network in the reaction. Chemsuschem, 2013, 6(12): 2356-2368.
|
[67] |
Sinko R, Keten S. Traction-separation laws and stick-slip shear phenomenon of interfaces between cellulose nanocrystals. Journal of the Mechanics and Physics of Solids, 2015, 78: 526-539.
|
[68] |
何泽洲. 非共价界面层状纳米复合材料的多尺度力学与设计[D] . 合肥: 中国科学技术大学, 2021.
|
[69] |
He Z Z, Zhu Y B, Xia J, et al. Optimization design on simultaneously strengthening and toughening graphene-based nacre-like materials through noncovalent interaction. Journal of the Mechanics and Physics of Solids, 2019, 133: 103706.
|
[70] |
Zhu H L, Zhu S Z, Jia Z, et al. Anomalous scaling law of strength and toughness of cellulose nanopaper. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(29): 8971-8976.
|
[71] |
Barthelat F, Yin Z, Buehler M J. Structure and mechanics of interfaces in biological materials. Nature Reviews Materials, 2016, 1(4): 1-16.
|
[72] |
Dastjerdi A K, Rabiei R, Barthelat F. The weak interfaces within tough natural composites: Experiments on three types of nacre. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 19: 50-60.
|
[73] |
Cox H L. The elasticity and strength of paper and other fibrous materials British Journal of Applied Physics. British Journal of Applied Physics, 1952, 3(3): 72-79.
|
[74] |
He Z Z, Zhu Y B, Wu H G. Edge effect on interlayer shear in multilayer two-dimensional material assemblies. International Journal of Solids and Structures, 2020, 204: 128-137.
|
[75] |
He Z Z, Zhu Y B, Wu H A. A universal mechanical framework for noncovalent interface in laminated nanocomposites. Journal of the Mechanics and Physics of Solids, 2022, 158: 104560.
|
[76] |
Meng Q H, Shi X H. A microstructure-based constitutive model of anisotropic cellulose nanopaper with aligned nanofibers. Extreme Mechanics Letters, 2021, 43: 101158.
|
[77] |
Mittal N, Ansari F, Gowda V K, et al. Multiscale control of nanocellulose assembly: Transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano, 2018, 12(7): 6378-6388.
|
[78] |
Meng Q H, Li B, Li T, et al. A multiscale crack-bridging model of cellulose nanopaper. Journal of the Mechanics and Physics of Solids, 2017, 103: 22-39.
|
[79] |
Meng Q H, Li B, Li T, et al. Effects of nanofiber orientations on the fracture toughness of cellulose nanopaper. Engineering Fracture Mechanics, 2018, 194: 350-361.
|
[80] |
Suksangpanya N, Yaraghi N A, Kisailus D, et al. Twisting cracks in Bouligand structures. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76: 38-57.
|
[81] |
Song Z Q, Ni Y, Cai S Q. Fracture modes and hybrid toughening mechanisms in oscillated/twisted plywood structure. Acta Biomaterialia, 2019, 91: 284-293.
|
[82] |
Hou Y Z, Guan Q F, Xia J, et al. Strengthening and toughening hierarchical nanocellulose via humidity-mediated interface. ACS Nano, 2021, 15(1): 1310-1320.
|
[83] |
Wang S, Jiang F, Xu X, et al. Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Advanced Materials, 2017, 29(35): 1702498.
|
[84] |
Jia C, Chen C, Kuang Y, et al. From wood to textiles: Top-down assembly of aligned cellulose nanofibers. Advanced Materials, 2018, 30(30): e1801347.
|
[85] |
Gao H-L, Zhao R, Cui C, et al. Bioinspired hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers. National Science Review, 2020, 7(1): 73-83.
|
[86] |
Mittal N, Benselfelt T, Ansari F, et al. Ion-specific assembly of strong, tough, and stiff biofibers. Angewandte Chemie, 2019, 58(51): 18562-18569.
|
[87] |
Wang S, Li T, Chen C, et al. Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers. Advanced Functional Materials, 2018, 28(24): 1707491.
|
[88] |
Ye D, Lei X, Li T, et al. Ultrahigh tough, super clear, and highly anisotropic nanofiber-structured regenerated cellulose films. ACS Nano, 2019, 13(4): 4843-4853.
|
[89] |
Chen F, Xiang W, Sawada D, et al. Exploring large ductility in cellulose nanopaper combining high toughness and strength. ACS Nano, 2020, 14(9): 11150-11159.
|
[90] |
Zhou Y, Chen C, Zhu S, et al. A printed, recyclable, ultra-strong, and ultra-tough graphite structural material. Materials Today, 2019, 30: 17-25.
|
[91] |
Song J, Chen C, Zhu S, et al. Processing bulk natural wood into a high-performance structural material. Nature, 2018, 554(7691): 224-228.
|
[92] |
Guan Q F, Yang H B, Han Z M, et al. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Science Advances, 2020, 6(18): eaaz1114.
|
[93] |
Guan Q F, Han Z-M, Yang H-B, et al. Regenerated isotropic wood. National Science Review, 2021, 8(7): 132-140.
|
[94] |
Guan Q F, Yang H B, Han Z M, et al. An all-natural bioinspired structural material for plastic replacement. Nature Communications, 2020, 11(1): 5401.
|
[95] |
Xiao S, Chen C, Xia Q, et al. Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science, 2021, 374(6566): 465-471.
|
[96] |
Yang C, Wu Q, Xie W, et al. Copper-coordinated cellulose ion conductors for solid-state batteries. Nature, 2021, 598(7882): 590-596.
|
[97] |
Chen C, Song J, Cheng J, et al. Highly elastic hydrated cellulosic materials with durable compressibility and tunable conductivity. ACS nano, 2020, 14(12): 16723-16734.
|
[98] |
Li T, Zhai Y, He S M, et al. A radiative cooling structural material. Science, 2019, 364(6442): 760-763.
|
[99] |
Kuang Y, Chen C, He S, et al. A high-performance self-regenerating solar evaporator for continuous water desalination. Advanced Materials, 2019, 31(23): e1900498.
|
[100] |
Zhu M, Song J, Li T, et al. Highly anisotropic, highly transparent wood composites. Advanced Materials, 2016, 28(26): 5181-5187.
|
[101] |
Mi R, Chen C, Keplinger T, et al. Scalable aesthetic transparent wood for energy efficient buildings. Nature Communications, 2020, 11(1): 1-9.
|
[102] |
Ray U, Zhu S Z, Pang Z Q, et al. Mechanics design in cellulose-enabled high-performance functional materials. Advanced Materials, 2021, 33(28): 2002504.
|
[103] |
Paakko M, Ankerfors M, Kosonen H, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 2007, 8(6): 1934-1941.
|
[104] |
Fang Z Q, Li B, Liu Y, et al. Critical role of degree of polymerization of cellulose in super-strong nanocellulose films. Matter, 2020, 2(4): 1000-1014.
|
[105] |
Henriksson M, Berglund L A, Isaksson P, et al. Cellulose nanopaper structures of high toughness. Biomacromolecules, 2008, 9(6): 1579-1585.
|
[106] |
Galland S, Berthold F, Prakobna K, et al. Holocellulose nanofibers of high molar mass and small diameter for high-strength nanopaper. Biomacromolecules, 2015, 16(8): 2427-2435.
|
[107] |
Ozkan M, Borghei M, Karakoc A, et al. Films based on crosslinked TEMPO-oxidized cellulose and predictive analysis via machine learning. Scientific Reports, 2018, 8(1): 1-9.
|
[108] |
Ozkan M, Karakoc A, Borghei M, et al. Machine learning assisted design of Tailor-made nanocellulose films: A combination of experimental and computational studies. Polymer Composites, 2019, 40(10): 4013-4022.
|
[109] |
Lamm M E, Li K, Qian J, et al. Recent advances in functional materials through cellulose nanofiber templating. Advanced Materials, 2021, 33(12) : 2005538.
|