[1] |
Yang L. An application of principal component analysis to stock portfolio management. Christchurch, New Zealand: University of Canterbury, 2015.
|
[2] |
Cadima J, Jolliffe I T. Loading and correlations in the interpretation of principle components. Journal of Applied Statistics, 1995, 22(2): 203-214.
|
[3] |
Vines S. Simple principal components. Journal of the Royal Statistical Society: Series C (Applied Statistics), 2000, 49(4): 441-451.
|
[4] |
Ma Z. Sparse principal component analysis and iterative thresholding. Annals of Statistics, 2013, 41(2): 772-801.
|
[5] |
Jolliffe I T, Trendafilov N T, Uddin M. A modified principal component technique based on the LASSO. Journal of Computational and Graphical Statistics, 2003, 12(3): 531-547.
|
[6] |
d’Aspremont A, El Ghaoui L, Jordan M I, et al. A direct formulation for sparse PCA using semidefinite programming. SIAM Review, 2007, 49(3): 434-448.
|
[7] |
Journée M, Nesterov Y, Richtárik P, et al. Generalized power method for sparse principal component analysis. Journal of Machine Learning Research, 2010, 11(2): 517-553.
|
[8] |
Moghaddam B, Weiss Y, Avidan S. Spectral bounds for sparse PCA: Exact and greedy algorithms. In: Proceedings of the 18th International Conference on Neural Information Processing Systems. Cambridge, MA: MIT Press, 2005: 915-922.
|
[9] |
d’Aspremont A, Bach F, El Ghaoui L. Optimal solutions for sparse principal component analysis. Journal of Machine Learning Research, 2008, 9(7): 1269-1294.
|
[10] |
Croux C, Filzmoser P, Fritz H. Robust sparse principal component analysis. Technometrics, 2013, 55(2): 202-214.
|
[11] |
Shen H, Huang J Z. Sparse principal component analysis via regularized low rank matrix approximation. Journal of Multivariate Analysis, 2008, 99(6): 1015-1034.
|
[12] |
Zou H, Hastie T, Tibshirani R. Sparse principal component analysis. Journal of Computational and Graphical Statistics, 2006, 15(2): 265-286.
|
[13] |
Tipping M E, Bishop C M. Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 1999, 61(3): 611-622.
|
[14] |
Sigg C D, Buhmann J M. Expectation-maximization for sparse and non-negative PCA. In: Proceedings of the 25th International Conference on Machine Learning. New York: Association for Computing Machinery, 2008: 960-967.
|
[15] |
Witten D M, Tibshirani R, Hastie T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics, 2009, 10(3): 515-534.
|
[16] |
Friedman J, Hastie T, Tibshirani R, et al. The Elements of Statistical Learning. New York: Springer, 2001.
|
[17] |
Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2005, 67(2): 301-320.
|
[18] |
Avellaneda M. Hierarchical PCA and applications to portfolio management. https://ssrn.com/abstract=3467712.
|
[19] |
Hsu Y L, Huang P Y, Chen D T. Sparse principal component analysis in cancer research. Translational Cancer Research, 2014, 3(3): 182-190.
|
[20] |
Wen C, Zhang A, Quan S, et al. BeSS: An R package for best subset selection in linear, logistic and CoxPH models. Journal of Statistical Software, 2020, 94(1): 1-24.
|
[21] |
Bertsimas D, Cory-Wright R, Pauphilet J. Solving large-scale sparse PCA to certifiable (near) optimality. https://arxiv.org/abs/2005.05195.
|
[1] |
Yang L. An application of principal component analysis to stock portfolio management. Christchurch, New Zealand: University of Canterbury, 2015.
|
[2] |
Cadima J, Jolliffe I T. Loading and correlations in the interpretation of principle components. Journal of Applied Statistics, 1995, 22(2): 203-214.
|
[3] |
Vines S. Simple principal components. Journal of the Royal Statistical Society: Series C (Applied Statistics), 2000, 49(4): 441-451.
|
[4] |
Ma Z. Sparse principal component analysis and iterative thresholding. Annals of Statistics, 2013, 41(2): 772-801.
|
[5] |
Jolliffe I T, Trendafilov N T, Uddin M. A modified principal component technique based on the LASSO. Journal of Computational and Graphical Statistics, 2003, 12(3): 531-547.
|
[6] |
d’Aspremont A, El Ghaoui L, Jordan M I, et al. A direct formulation for sparse PCA using semidefinite programming. SIAM Review, 2007, 49(3): 434-448.
|
[7] |
Journée M, Nesterov Y, Richtárik P, et al. Generalized power method for sparse principal component analysis. Journal of Machine Learning Research, 2010, 11(2): 517-553.
|
[8] |
Moghaddam B, Weiss Y, Avidan S. Spectral bounds for sparse PCA: Exact and greedy algorithms. In: Proceedings of the 18th International Conference on Neural Information Processing Systems. Cambridge, MA: MIT Press, 2005: 915-922.
|
[9] |
d’Aspremont A, Bach F, El Ghaoui L. Optimal solutions for sparse principal component analysis. Journal of Machine Learning Research, 2008, 9(7): 1269-1294.
|
[10] |
Croux C, Filzmoser P, Fritz H. Robust sparse principal component analysis. Technometrics, 2013, 55(2): 202-214.
|
[11] |
Shen H, Huang J Z. Sparse principal component analysis via regularized low rank matrix approximation. Journal of Multivariate Analysis, 2008, 99(6): 1015-1034.
|
[12] |
Zou H, Hastie T, Tibshirani R. Sparse principal component analysis. Journal of Computational and Graphical Statistics, 2006, 15(2): 265-286.
|
[13] |
Tipping M E, Bishop C M. Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 1999, 61(3): 611-622.
|
[14] |
Sigg C D, Buhmann J M. Expectation-maximization for sparse and non-negative PCA. In: Proceedings of the 25th International Conference on Machine Learning. New York: Association for Computing Machinery, 2008: 960-967.
|
[15] |
Witten D M, Tibshirani R, Hastie T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics, 2009, 10(3): 515-534.
|
[16] |
Friedman J, Hastie T, Tibshirani R, et al. The Elements of Statistical Learning. New York: Springer, 2001.
|
[17] |
Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2005, 67(2): 301-320.
|
[18] |
Avellaneda M. Hierarchical PCA and applications to portfolio management. https://ssrn.com/abstract=3467712.
|
[19] |
Hsu Y L, Huang P Y, Chen D T. Sparse principal component analysis in cancer research. Translational Cancer Research, 2014, 3(3): 182-190.
|
[20] |
Wen C, Zhang A, Quan S, et al. BeSS: An R package for best subset selection in linear, logistic and CoxPH models. Journal of Statistical Software, 2020, 94(1): 1-24.
|
[21] |
Bertsimas D, Cory-Wright R, Pauphilet J. Solving large-scale sparse PCA to certifiable (near) optimality. https://arxiv.org/abs/2005.05195.
|