[1] |
Berry M V, Balazs N L. Nonspreading wave packets. America Journal of Physics, 1979, 47(3): 264-267.
|
[2] |
Siviloglou G A, Broky J Dogariu A, et al. Observation of acceleration Airy beams. Physical Review Letters, 2007, 99(21): 213901.
|
[3] |
Christodoulides D N, Siviloglou G A. Accelerating finite energy Airy beams. Optics Letters, 2007, 32(8): 979-981.
|
[4] |
Zhang P, Prakash J, Zhang Z, et al. Trapping and guiding microparticles with morphing autofocusing Airy beams. Optics Letters, 2011, 36(15): 2883-2885.
|
[5] |
Mathis A, Courvoisier F, Froehly L, et al. Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams. Applied Physics Letters, 2012, 101(7): 07110.
|
[6] |
Cai Z, Qi X B, Pan D, et al. Dynamic Airy imaging through high-efficiency broadband phase microelements by femtosecond laser direct writing. Photonics Research, 2020, 8(6): 875-883.
|
[7] |
Wu D, Xu J, Niu L G, et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light: Science & Applications, 2015, 4: e228.
|
[8] |
Xu B, Shi Y, Lao Z X, et al. Real-time two-photon lithography in controlled flow to create a single microparticle array and particle-cluster array for optofluidic imaging. Lab on a Chip, 2018, 18(3):442-450.
|
[9] |
Hu Y, Chen Y, Ma J, et al. High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser induced photo polymerization. Applied Physics Letters, 2013, 103(14): 270-276.
|
[10] |
Turner M D, Saha M, Zhang Q M, et al. Miniture chiral beamsplitter on gyroid photonic crystals. Nature Phonotics, 2013, 7: 801-805.
|
[11] |
Gissibl T, Thiele S, Herkommer A, et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics, 2016, 10: 554-560.
|
[12] |
Green B J, Panagiotakopoulou M, Pramotton F M, et al. Pore shape defines paths of metastatic cell migration. Nano Letters, 2018, 18(3): 2140-2147.
|
[13] |
Barner-Kowolli C, Bastmeyer M, Blasco E, et al. 3D laser micro- and nanoprinting: Challenges for chemistry. Angewandte Chemie International Edition, 2017, 56(50):15828-15845.
|
[14] |
Hipler M, Lemma E D, Bertels S, et al. 3D scafflolds to study basic cell biology. Advanced Materials, 2019,31(26): 1808110.1-1808110.5.
|
[15] |
Gittard S D, Nguyen A, Obata K, et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomedical Optics Express, 2011, 2(11):3167-3178.
|
[16] |
Hu Y L, Feng W F, Xue C, et al. Self-assembled micropillars fabricated by holographic femtosecond multifoci beams for in-situ trapping of microparticles. Optics Letters, 2020, 45(17): 4698-4701.
|
[17] |
Yang D, Liu L, Gong Q, et al. Rapid two-photon polymerization of an arbitrary 3D microstructure with 3D focal field engineering. Macromolecular Rapid Communications, 2019, 40(8): 201900041.
|
[18] |
Wu P F, Ke X Z, Song Q Q. Realization of experiment on auto-focusing array airy beam. Chinese Journal of Lasers, 2018, 45(6): 0605002.
|
[19] |
Ni J C, Wang C W, Zhang C C, et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light: science & Applications, 2017, 6(7): e17011.
|
[20] |
Martella D, Nocentini S, Nuzhdin D, et al. Photonic microhand with autonomous action. Advanced Materials, 2017, 29(42): 1704047.1-1704047.8.
|
[21] |
Ashkin A. Optical trapping and manipulation of neutral particles using lasers. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(10): 4853-4860.
|
[22] |
Curtis J E, Koss B A, Grier D G. Dynamic holographic optical tweezers. Optics, Communications, 2002, 207(1-6): 169-175.
|
[23] |
Azam A, Laflin K E, Jamal M, et al. Self-folding micropatterned polymeric containers. Biomedical Microdevices, 2011, 13(1): 51-58.
|
[24] |
Sakar M S , Steager E B , Kim D H , et al. Single cell manipulation using ferromagnetic composite microtransporters. Applied Physics Letters, 2010, 96(4): 04375.1-04375.3.
|
[25] |
Hu Y, Lao Z, Cumming B P, et al. Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly. Proc. Natl. Acad. USA, 2015, 112(22): 6876-6881.
|
[26] |
Ni J, Wang Z, Li Z, et al. Multifurcate assembly of slanted micropillars fabricated by superposition of optical vortices and application in high-efficiency trapping microparticles. Advanced Functional Materials, 2017, 27(45): 1701939.1-1701939.8.
|
[27] |
Lao Z, Pan D, Yuan H, et al. Mechanical-tunable capillary-force driven self-assembled hierarchical structures on soft substrate. ACS Nano, 2018, 12(10): 10142-10150.
|
[1] |
Berry M V, Balazs N L. Nonspreading wave packets. America Journal of Physics, 1979, 47(3): 264-267.
|
[2] |
Siviloglou G A, Broky J Dogariu A, et al. Observation of acceleration Airy beams. Physical Review Letters, 2007, 99(21): 213901.
|
[3] |
Christodoulides D N, Siviloglou G A. Accelerating finite energy Airy beams. Optics Letters, 2007, 32(8): 979-981.
|
[4] |
Zhang P, Prakash J, Zhang Z, et al. Trapping and guiding microparticles with morphing autofocusing Airy beams. Optics Letters, 2011, 36(15): 2883-2885.
|
[5] |
Mathis A, Courvoisier F, Froehly L, et al. Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams. Applied Physics Letters, 2012, 101(7): 07110.
|
[6] |
Cai Z, Qi X B, Pan D, et al. Dynamic Airy imaging through high-efficiency broadband phase microelements by femtosecond laser direct writing. Photonics Research, 2020, 8(6): 875-883.
|
[7] |
Wu D, Xu J, Niu L G, et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light: Science & Applications, 2015, 4: e228.
|
[8] |
Xu B, Shi Y, Lao Z X, et al. Real-time two-photon lithography in controlled flow to create a single microparticle array and particle-cluster array for optofluidic imaging. Lab on a Chip, 2018, 18(3):442-450.
|
[9] |
Hu Y, Chen Y, Ma J, et al. High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser induced photo polymerization. Applied Physics Letters, 2013, 103(14): 270-276.
|
[10] |
Turner M D, Saha M, Zhang Q M, et al. Miniture chiral beamsplitter on gyroid photonic crystals. Nature Phonotics, 2013, 7: 801-805.
|
[11] |
Gissibl T, Thiele S, Herkommer A, et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics, 2016, 10: 554-560.
|
[12] |
Green B J, Panagiotakopoulou M, Pramotton F M, et al. Pore shape defines paths of metastatic cell migration. Nano Letters, 2018, 18(3): 2140-2147.
|
[13] |
Barner-Kowolli C, Bastmeyer M, Blasco E, et al. 3D laser micro- and nanoprinting: Challenges for chemistry. Angewandte Chemie International Edition, 2017, 56(50):15828-15845.
|
[14] |
Hipler M, Lemma E D, Bertels S, et al. 3D scafflolds to study basic cell biology. Advanced Materials, 2019,31(26): 1808110.1-1808110.5.
|
[15] |
Gittard S D, Nguyen A, Obata K, et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomedical Optics Express, 2011, 2(11):3167-3178.
|
[16] |
Hu Y L, Feng W F, Xue C, et al. Self-assembled micropillars fabricated by holographic femtosecond multifoci beams for in-situ trapping of microparticles. Optics Letters, 2020, 45(17): 4698-4701.
|
[17] |
Yang D, Liu L, Gong Q, et al. Rapid two-photon polymerization of an arbitrary 3D microstructure with 3D focal field engineering. Macromolecular Rapid Communications, 2019, 40(8): 201900041.
|
[18] |
Wu P F, Ke X Z, Song Q Q. Realization of experiment on auto-focusing array airy beam. Chinese Journal of Lasers, 2018, 45(6): 0605002.
|
[19] |
Ni J C, Wang C W, Zhang C C, et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light: science & Applications, 2017, 6(7): e17011.
|
[20] |
Martella D, Nocentini S, Nuzhdin D, et al. Photonic microhand with autonomous action. Advanced Materials, 2017, 29(42): 1704047.1-1704047.8.
|
[21] |
Ashkin A. Optical trapping and manipulation of neutral particles using lasers. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(10): 4853-4860.
|
[22] |
Curtis J E, Koss B A, Grier D G. Dynamic holographic optical tweezers. Optics, Communications, 2002, 207(1-6): 169-175.
|
[23] |
Azam A, Laflin K E, Jamal M, et al. Self-folding micropatterned polymeric containers. Biomedical Microdevices, 2011, 13(1): 51-58.
|
[24] |
Sakar M S , Steager E B , Kim D H , et al. Single cell manipulation using ferromagnetic composite microtransporters. Applied Physics Letters, 2010, 96(4): 04375.1-04375.3.
|
[25] |
Hu Y, Lao Z, Cumming B P, et al. Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly. Proc. Natl. Acad. USA, 2015, 112(22): 6876-6881.
|
[26] |
Ni J, Wang Z, Li Z, et al. Multifurcate assembly of slanted micropillars fabricated by superposition of optical vortices and application in high-efficiency trapping microparticles. Advanced Functional Materials, 2017, 27(45): 1701939.1-1701939.8.
|
[27] |
Lao Z, Pan D, Yuan H, et al. Mechanical-tunable capillary-force driven self-assembled hierarchical structures on soft substrate. ACS Nano, 2018, 12(10): 10142-10150.
|